Categories
Reading List EN

RL #021: Unblock your brain: AI-based Communication in Science

This Reading List is a little different. All text passages in italics were formulated by an AI named Neuroflash and later translated via Deepl.com. Reading tips and some personal thoughts of the curator appear in the last paragraph.

AI in Science Communication

Scientific articles are often dull and difficult to understand. But that doesn’t have to be the case! Thanks to new technologies, such as AI-based software, also scientists can write their articles in an interesting and easy-to-understand way.

In recent years, the role of AI in science has become increasingly clear. Its ability to analyze and process large amounts of data helps researchers understand and process complex topics. While AI is not yet perfect, it has the potential to make lasting improvements to science communication – especially in terms of efficiency and quality. Nevertheless, it is important to know the limits of the technology and not to trust it blindly. Only in this way can we ensure that AI actually supports us and does not replace us.

Photo by Joel Filipe on Unsplash

Examples of the Application of AI in Science Communication

In the communication of science, i.e. in the writing down of processes and results, AI already supports researchers in literature research or in the preparation of abstracts and summaries. AI can also help with the writing of scientific articles. However, it does not take over the complete work but supports the scientist in the research and the structure of the argument. It is important to keep control! The AI formulates self-criticism: for example, that it cannot convey emotions.

Bottom line: Free your Brain – with AI!

With this contribution already, it is clear that AI will soon play an important role in science communication. By using AI-based systems, scientists can publish their research faster and more effectively. Most importantly, AI enables scientists as well as journalists to write interesting and easy-to-understand texts. If we are to believe AI’s self-assessment, it will soon make a significant contribution to ensuring that the science we produce is read and understood by as many people as possible.

Photo by Max Langelott on Unsplash

Reading Suggestions and Remarks from a Human Being

The AI appears self-confident. And it has every reason to be. In “Tortured Phrases,” Guillaume Cabanac et al. address the increase in AI-generated texts in science, questioning the integrity of the researchers. Less biased, Yolanda Gil asks in the article published in AI Magazine whether AI will soon be able to formulate scientific texts. Her answer: yes – and sooner rather than later. The resulting challenges and mandates for scientists themselves are detailed by Mico Tatalovic in his paper “AI writing bots are about to revolutionize science journalism” for the Journal for Science Communication.

How does it feel to have the Reading List written? It was important to me to intervene as little as possible in the text proposal. While this is less obvious in English, this can be seen in the gender-specific language of the German version. But also in the confidence that the AI brings to the table. How biased is an AI that writes about itself? A lot of it I wouldn’t phrase that way; I’d tone it down. Or be more specific. These are the formulations from which you can guess an AI. Not a flippant formulation, but not a very specific one either. Daring is the imperative, it seems. Don’t worry. In the future, we will write ourselves again.

Categories
Reading List EN

RL #020: Science Communication and Democracy

Always in a constant state of fluctuation, global democracy has recently seen a strong decline. According to a 2021 press release from Freedom House, various factors, one of which was the Covid-19 pandemic, have recently contributed to a retreat of the individual from the public space. Shielding oneself from un-understandable developments in not only world health, natural science, and economy, but also social relationships has turned out to damage the growth of freedom, inclusiveness, and consent, which are extremely important cornerstones of democracy. Science communication can clarify difficult-to-comprehend concepts. It can bridge the gap between ongoing research and the general public. It can ease the discomfort of contributing to the public space. Following our Reading List tackling the inclusivity of science communication, this time we share some good reads that point to the relationship between science communication and democracy.

Democracy and an Informed but Helpless Public

Democracy is a process that requires a continuously informed public. It is the only way to allow for an equal public discourse. But things appear to be much more complex. In „The Fall of the Public Man”, sociologist Richard Sennett points out that the omission to explain science to civil society (available for purchase here) leads to the disruption of democratic processes. Incomprehensible information increases the misunderstanding of ongoing developments. And it leads to a lack of interest in everything that goes on beyond the individual sphere.

Photo by Marc Kleen on Unsplash

Let’s pin it down to the urban scale. Highlighted in Peter Marcuse’s paper „From Critical Urban Theory to the Right to the City”, the globally felt dissatisfaction with current worldwide living conditions causes a lot of frustration. The frustration does mainly result from a lack of access to knowledge. It inhibits our understanding of our potential relevance and role in improving our communal situation thus making us feel helpless. The feeling of helplessness is then proliferated by the physical and intellectual expansion of private actors. We cannot judge their impact on our environment, economy, and society. As argued in the much-cited article „Whose City Is It? Globalization and the Formation of New Claims” by Saskia Sassen, it is those entities suppressing the individual from the public.

Science Communicators within Democratic Environments

The widely spread misconception supporting notions of helplessness, is that scientific and academic knowledge can be produced by trained specialists only. Sure, specialization gives more capability for the execution and judgment of research. Following the argumentation of Bruno Latour in his 1993 published book „We have never been modern” however, research depends on the co-production and co-creation of information. To his understanding, Social change happens on a healthy, genuine, and transparent plane. It is all about giving people the feeling of autonomy and the capacity to govern themselves.

Photo by Artem Maltsev on Unsplash

On a similar path to Latour, in „Expertise, Democracy and Science Communication”, Bruce V. Lewenstein argues, that the more civil society comprehends science, the more attentive and appreciative they are of it. In return, this increases public demand and therefore potential funding. At the same time, as pointed out by Bernard Schiele et al. in ‘Science Communication and Democracy’, the co-creation of information leads to a more heterogeneous society. A society that is able to make informed and thus more sophisticated decisions about the future of our planet.

What Science Communication Can Do

Science communication alone will not solve the issue of a declining global democracy. It does, however, play a role in taking researched data from the hands of the selected few and spreading it into the possession of the multitudes. This decentralization of knowledge is an important factor of egalitarianism, but also in the creation of a well-informed voter. It improves the quality of decision-making in a democratic state. In „Scientific Citizenship in a Democratic Society”, Vilhjálmur Árnason from the University of Iceland argues that science communication and more explicitly scientific literacy drives public policy making. He claims that the creation of forums for reciprocal teaching is key for battling ignorance and shaping sustainable societal change. For interested readers, Daniel Williams from The Hasting Center further investigates the concept of ‘motivated ignorance’.

Photo by Danny Lines on Unsplash

Finally, this is where science communication can have a deeper impact. Knowledge democracy, as Alice Lemkes names the challenge of science communication in her white paper for Lankelly Chase, is the only way to counteract the inflexible system of hierarchical and undemocratic knowledge production.

This Reading List was written by Zuzanna Zajac.

Categories
Reading List EN

RL #019: Why Communication is a Crucial Part of any Science Endeavour

At Oikoplus we offer science communication. But why actually? What was the purpose of communicating research results to a broad audience again? Isn’t there a specialised audience for research? Isn’t it enough for those who know about it to read and talk about research? Well. There are valid reasons for a broad approach to scientific outreach. In this Reading List, you will find some of them.

In German, there is the expression “coming down to earth”. The metaphor is used to call for a discussion to be calibrated back to the shared factual basis when it has gotten out of hand and untruths or lies have crept in. Knowledge of facts and facts are the result of research and science. So it is precisely the ground from the metaphor that is at stake. And it is not only experts who walk on this ground, but all of us – even if we all leave it occasionally. Some more rarely, some more often, whether consciously or unconsciously.

For a more inclusive science

In 2015, Mónica Feliú-Mójer summarised for Scientific American’s blog why effective communication makes for better science. When scientists are able to communicate effectively beyond their peers to a broader, non-scientific audience, it strengthens support for science, promotes understanding of its broader importance to society, and encourages more informed decision-making. Communication can also make science accessible to audiences traditionally excluded from the scientific process. It can help science become more diverse and inclusive.

Science for the common good

In texts on science communication, one reads time and again that researchers should not lose contact with society. Of course not. Why should research stand outside society? Ideally, research should serve society. However, this relationship between science and civil society is by no means self-evident. In an article for The conversation, Toss Gascoigne and Joan Leach, both professors at the Centre for the Public Awareness of Science at the Australian National University, argue that the 20th century can be read as a long plea for sience communication in the interest of the common good.

Not even researchers read research papers only

Dmitry Dorofeev takes a short excursion into the history of science communication. In an article on the importance of science communication in layman’s terms, he starts from the 19th century. According to Dorofeev, in 1895 an editor of the Viennese daily newspaper Neue Freie Presse learned by chance about the discovery of X-rays by Wilhelm Röntgen, but recognised the significance and placed an article on the front page of his newspaper. The London Chronicle, the New York Sun, and by the New York Times did later pick up this article. The rapid dissemination of this imaging method in mass media, certainly contributed to the fact that X-ray technology was mentioned in 1000+ scientific articles the following year, says Dorofeev. After all – and this is still true today – researchers do not only inform themselves in specialised publications.

Promotion or PR?

Communicating research and science in a way that as many people as possible can participate is a noble reason. It allows society to benefit and researchers to inform themselves about the work of their colleagues. In addition, science communication increasingly serves as advertising and PR for individual research institutions and science locations. Empirically, Peter Weingart and Marina Joubert at Stellenbosch University in South Africa looked at the motivations to engage in science communication. Based on their findings on the ever-increasing actively pursued science communication, the authors conclude that a distinction between educational and promotional forms of science communication maintains the credibility of science.

There are a number of good reasons for communicating science and the results of research in a way they are understandable and interesting. The most important of all reasons remains that the ground of facts cited at the beginning must be ordered. Because curiosity, knowledge and innovation grow on it. 
 
 In our ArcheoDanube project, we are therefore trying to make archaeology accessible to tourists in a sustainable way and to make the results of research on the history of the Danube region accessible to as many people as possible. Indeed, the coordinators just published the fourth newsletter of the Interreg project.  
 
 

Categories
Reading List EN

RL #018: Writing with fluency: reducing energy in the reading process

In academia, we read all the time. We read long texts, short texts, monographs, anthologies, and abstracts. In the natural sciences, papers are usually shorter and follow a tightly organised structure. As for the social sciences, by contrast, the texts are longer and more fluid in structure. In both, we find figures of speech, examples and comparisons. They provide a framework for the results and add meaning. Across all disciplines, however, readers devote energy depending on the quality of the text. Reading energy is what this Reading List is all about.

Et= Esyn+Esem

In 2014, alarm bells were ringing all across the US scholarly community: for the first time in 35 years, scholars were reading fewer! Soon it turned out that the analysis was wrong and the title of the article confusing: scientists read 264 articles per year or 22 per month and have never been reading more. In an article published in Nature, Richard Van Noorden provides insight into the details of scientists’ reading habits.

For every new article, colleagues engage with previously unfamiliar narratives and writing styles. Without knowing the content, they invest energy in it. The total energy required to process a sentence (Et) is made up of two components: syntactic energy (Esyn) and semantic energy (Esem). At least, this is how Jean-Luc Lebrun argues in the book “Scientific Writing” published in 2007.

The best way to understand the energy required is … well … to read. How difficult is it for you to decode long, complex sentences and – more importantly – were you able to grasp the contents alongside their structure? To clarify the complexity of self-written sentences, it helps to underline all the main statements (the compound of noun and verb). The greater the gaps between the underlined passages, the more cumbersome the formulations. We have arrived at Lebruns’ core.

Foto von D0N MIL04K von Pexels

Break sentence structures

There are a number of strategies to help readers save energy when decoding sentence structures and instead spend it on understanding the content. In 2013, Tomi Kinnunen et al. from the University of Eastern Finland published SWAN – Scientific Writing Assistant. Outlined in a paper, SWAN built on the premises established by Lebrun and looked for particularly challenging sentence structures in texts: nested sentences, nominal structures, and long-windedness. Today, digital solutions such as Grammarly take over this function. But beware and continue breaking grammatical structures if beneficial to the readability. Also in academic essays.

Punctuation marks are particularly important when breaking up sentence structures: Commas, semi-colons, colons and dashes. In a blog post by the Writing Cooperative, Karen deGroot Karter shows how punctuation supports readability. Stephen Wilbers is more detailed. He devotes Week 21 of Mastering the Craft of Writing to the use of punctuation marks. His thesis is that while all punctuation separates, they offer different stylistic possibilities. Commas can be played around with.

Concluding remarks

Readability can be measured. For this text, a WordPress plugin did the job. The Flesch Reading Ease of this Reading List is 49,5. The text is considered difficult to read. The reason for the low score are sentences that are too long and too few transition words. However, it would be wrong to be put off by this. There are certainly readers and authors who would describe the text as easily readable and – overall – understandable. Assuming there are 22 articles a month and 264 articles read by every scientist per year, this likely applies to many scholarly publications. Nevertheless, examining one’s own writing from an energy perspective is certainly helpful. It’s a crucial step in making individual thinking and ideas approachable to others.

Categories
Reading List EN

RL #017: Ethics in Science Communication

In this rather short reading list, we address the question of whether there are ethical standards that science communication should adhere to. A simple answer is: yes, of course. On closer examination, however, the question is not so trivial. For debates about ethical issues are omnipresent in science as well as in the communication industry. The laws of the communications industry do not apply to science. Scientific standards do not apply to the communications industry. In practice, this not-so-small difference became clear at the beginning of the Corona pandemic, when the government of the German state of North Rhine-Westphalia commissioned a study and this was then exploited to the maximum by a professional PR agency, possibly also leaving the interpretation of the scientific results to the PR agency. The case is summarised in a (German) article by KOM- Magazin für Kommunikation.

The Good Scientific Practice

The high standards it sets for itself in the production of knowledge make research become science. These standards of scientific work include transparency and the reproducibility of its methods as well as aspects such as honesty, accountability and reliability. In sum, adherence to scientific standards leads to Good Scientific Practice. Scientific standards are the answer to the question of how research must be conducted in order to be recognised as science. They ensure that scientific knowledge is distinguishable from empirical knowledge, anecdotal knowledge, mere tradition or religious knowledge. They ensure scientific integrity. A comprehensive definition of these standards can be found in the European Code of Conduct for Research Integrity.

Constant Self-Assessment

However, Good Scientific Practice alone is not necessarily sufficient to also meet ethical standards. Good scientific practice answers the question of how research is to be conducted in order to have integrity. Ethical standards also touch on the question of what should or should not be done in research. This involves the role of human and animal test subjects in research, the handling of personal data, from photos to the individual human genome. When it comes to the question of ethics in science, many research institutions rely on the constant self-assessment of researchers. The European Commission provides guidelines for the implementation of such self-assessments in EU-funded projects.

The Good Science-PR

All this concerns science. But what about ethics in science communication? Are there also standards and criteria for good science PR and dissemination, or even for the ethically correct SciComm? To put it in a nutshell: Yes, there are such standards, e.g. set up in 2016 by Wissenschaft im Dialog and the German Federal Association of University Communication (Bundesverband Hochschulkommunikation). They can be found here.

Categories
Reading List EN

RL #014: Well-run and successful meetings

Team meetings, project meetings, informal gatherings, and conferences. It is impressive how different meetings are conducted and experienced. Without focusing on online meetings, this reading list collects publications and ideas on the topic.

Well-managed meetings

Good meetings save time and are productive. They create a pleasant atmosphere and convey appreciation. They achieve a goal, a compromise, or a basis for discussion for subsequent meetings. Some basic requirements apply. A room with windows is one of them. An agenda that can still be adjusted and modified. Space for discussions beyond the agenda and, depending on the meeting occasion, at least the prospect of catering.

From Unsplash.

But then the meeting begins. On his streaming channel, Max Castéra explains the model of group dynamics created by Bruce Tuckman in 1969. It shows the four phases of a (professional?) get-togethers. In his model, Tuckman divides meetings into Forming, Storming, Norming, Performing (Abstract to Tuckman’s original). The most significant insight for me was how important time is for creating group dynamics, and the fact that goal and time are relational. And you can influence that.

Shaping group dynamics in meetings

If you are organizing a meeting on an alpine pasture or self-catering hut, you can find the catalogue for group dynamics exercises of the Austrian Youth Red Cross. “Know your own Team! writes Mindtool in Improving group dynamics. The list of dominant characters within groups is also informative. The most comprehensive list for leading and shaping meetings and seminars is from Kevin Yee et al. He collects 289 freely accessible and comprehensibly categorized ideas for interactions.

From Unsplash.

Agenda and sense of time

I start with work situations. I don’t think the perfect agenda exists. There are, however, plenty of considerations on the topic. See here and here. If we then include the active shaping of group dynamics in the agenda, it usually becomes apparent that the program is ambitious. Boosting productivity comes in handy.

You could minimize the time to find solutions. In 1999, Bluedorn et al. argued in the Journal of Applied Psychology that meetings in which people stand, take 34% less time to reach solutions. The scientists compared the solution-finding process of 56 group constellations.

From Unsplash.

There are other ideas for active (time) management. For example, the Pomodoro Technique (app recommendations). The timer organizes one’s own, but also groups dynamic work processes in 25-minute intervals with breaks. During breaks or at the beginning of a longer session, you can exercise and activate your body and mind (e.g. the Active Meetings Guide der Emory University). More radical approaches are in the 16 Out of the Box Meeting Ideas by the Great Barn. Get out, drink coffee. Radical?

Good Meetings

I leave with a good feeling, knowing that we have taken a step forward. I have new ideas. There were creative and productive phases. And breaks.

I attended many well organized and excellently led meetings. People with marvellous skills in rhetoric, strategic empathy, and para-verbal aspects. But his is for further reading lists to come.