Categories
Reading List EN

RL #018: Writing with fluency: reducing energy in the reading process

In academia, we read all the time. We read long texts, short texts, monographs, anthologies, and abstracts. In the natural sciences, papers are usually shorter and follow a tightly organised structure. As for the social sciences, by contrast, the texts are longer and more fluid in structure. In both, we find figures of speech, examples and comparisons. They provide a framework for the results and add meaning. Across all disciplines, however, readers devote energy depending on the quality of the text. Reading energy is what this Reading List is all about.

Et= Esyn+Esem

In 2014, alarm bells were ringing all across the US scholarly community: for the first time in 35 years, scholars were reading fewer! Soon it turned out that the analysis was wrong and the title of the article confusing: scientists read 264 articles per year or 22 per month and have never been reading more. In an article published in Nature, Richard Van Noorden provides insight into the details of scientists’ reading habits.

For every new article, colleagues engage with previously unfamiliar narratives and writing styles. Without knowing the content, they invest energy in it. The total energy required to process a sentence (Et) is made up of two components: syntactic energy (Esyn) and semantic energy (Esem). At least, this is how Jean-Luc Lebrun argues in the book “Scientific Writing” published in 2007.

The best way to understand the energy required is … well … to read. How difficult is it for you to decode long, complex sentences and – more importantly – were you able to grasp the contents alongside their structure? To clarify the complexity of self-written sentences, it helps to underline all the main statements (the compound of noun and verb). The greater the gaps between the underlined passages, the more cumbersome the formulations. We have arrived at Lebruns’ core.

Foto von D0N MIL04K von Pexels

Break sentence structures

There are a number of strategies to help readers save energy when decoding sentence structures and instead spend it on understanding the content. In 2013, Tomi Kinnunen et al. from the University of Eastern Finland published SWAN – Scientific Writing Assistant. Outlined in a paper, SWAN built on the premises established by Lebrun and looked for particularly challenging sentence structures in texts: nested sentences, nominal structures, and long-windedness. Today, digital solutions such as Grammarly take over this function. But beware and continue breaking grammatical structures if beneficial to the readability. Also in academic essays.

Punctuation marks are particularly important when breaking up sentence structures: Commas, semi-colons, colons and dashes. In a blog post by the Writing Cooperative, Karen deGroot Karter shows how punctuation supports readability. Stephen Wilbers is more detailed. He devotes Week 21 of Mastering the Craft of Writing to the use of punctuation marks. His thesis is that while all punctuation separates, they offer different stylistic possibilities. Commas can be played around with.

Concluding remarks

Readability can be measured. For this text, a WordPress plugin did the job. The Flesch Reading Ease of this Reading List is 49,5. The text is considered difficult to read. The reason for the low score are sentences that are too long and too few transition words. However, it would be wrong to be put off by this. There are certainly readers and authors who would describe the text as easily readable and – overall – understandable. Assuming there are 22 articles a month and 264 articles read by every scientist per year, this likely applies to many scholarly publications. Nevertheless, examining one’s own writing from an energy perspective is certainly helpful. It’s a crucial step in making individual thinking and ideas approachable to others.

Categories
Reading List EN

RL #017: Ethics in Science Communication

In this rather short reading list, we address the question of whether there are ethical standards that science communication should adhere to. A simple answer is: yes, of course. On closer examination, however, the question is not so trivial. For debates about ethical issues are omnipresent in science as well as in the communication industry. The laws of the communications industry do not apply to science. Scientific standards do not apply to the communications industry. In practice, this not-so-small difference became clear at the beginning of the Corona pandemic, when the government of the German state of North Rhine-Westphalia commissioned a study and this was then exploited to the maximum by a professional PR agency, possibly also leaving the interpretation of the scientific results to the PR agency. The case is summarised in a (German) article by KOM- Magazin für Kommunikation.

The Good Scientific Practice

The high standards it sets for itself in the production of knowledge make research become science. These standards of scientific work include transparency and the reproducibility of its methods as well as aspects such as honesty, accountability and reliability. In sum, adherence to scientific standards leads to Good Scientific Practice. Scientific standards are the answer to the question of how research must be conducted in order to be recognised as science. They ensure that scientific knowledge is distinguishable from empirical knowledge, anecdotal knowledge, mere tradition or religious knowledge. They ensure scientific integrity. A comprehensive definition of these standards can be found in the European Code of Conduct for Research Integrity.

Constant Self-Assessment

However, Good Scientific Practice alone is not necessarily sufficient to also meet ethical standards. Good scientific practice answers the question of how research is to be conducted in order to have integrity. Ethical standards also touch on the question of what should or should not be done in research. This involves the role of human and animal test subjects in research, the handling of personal data, from photos to the individual human genome. When it comes to the question of ethics in science, many research institutions rely on the constant self-assessment of researchers. The European Commission provides guidelines for the implementation of such self-assessments in EU-funded projects.

The Good Science-PR

All this concerns science. But what about ethics in science communication? Are there also standards and criteria for good science PR and dissemination, or even for the ethically correct SciComm? To put it in a nutshell: Yes, there are such standards, e.g. set up in 2016 by Wissenschaft im Dialog and the German Federal Association of University Communication (Bundesverband Hochschulkommunikation). They can be found here.

Categories
Reading List EN

RL #014: Well-run and successful meetings

Team meetings, project meetings, informal gatherings, and conferences. It is impressive how different meetings are conducted and experienced. Without focusing on online meetings, this reading list collects publications and ideas on the topic.

Well-managed meetings

Good meetings save time and are productive. They create a pleasant atmosphere and convey appreciation. They achieve a goal, a compromise, or a basis for discussion for subsequent meetings. Some basic requirements apply. A room with windows is one of them. An agenda that can still be adjusted and modified. Space for discussions beyond the agenda and, depending on the meeting occasion, at least the prospect of catering.

From Unsplash.

But then the meeting begins. On his streaming channel, Max Castéra explains the model of group dynamics created by Bruce Tuckman in 1969. It shows the four phases of a (professional?) get-togethers. In his model, Tuckman divides meetings into Forming, Storming, Norming, Performing (Abstract to Tuckman’s original). The most significant insight for me was how important time is for creating group dynamics, and the fact that goal and time are relational. And you can influence that.

Shaping group dynamics in meetings

If you are organizing a meeting on an alpine pasture or self-catering hut, you can find the catalogue for group dynamics exercises of the Austrian Youth Red Cross. “Know your own Team! writes Mindtool in Improving group dynamics. The list of dominant characters within groups is also informative. The most comprehensive list for leading and shaping meetings and seminars is from Kevin Yee et al. He collects 289 freely accessible and comprehensibly categorized ideas for interactions.

From Unsplash.

Agenda and sense of time

I start with work situations. I don’t think the perfect agenda exists. There are, however, plenty of considerations on the topic. See here and here. If we then include the active shaping of group dynamics in the agenda, it usually becomes apparent that the program is ambitious. Boosting productivity comes in handy.

You could minimize the time to find solutions. In 1999, Bluedorn et al. argued in the Journal of Applied Psychology that meetings in which people stand, take 34% less time to reach solutions. The scientists compared the solution-finding process of 56 group constellations.

From Unsplash.

There are other ideas for active (time) management. For example, the Pomodoro Technique (app recommendations). The timer organizes one’s own, but also groups dynamic work processes in 25-minute intervals with breaks. During breaks or at the beginning of a longer session, you can exercise and activate your body and mind (e.g. the Active Meetings Guide der Emory University). More radical approaches are in the 16 Out of the Box Meeting Ideas by the Great Barn. Get out, drink coffee. Radical?

Good Meetings

I leave with a good feeling, knowing that we have taken a step forward. I have new ideas. There were creative and productive phases. And breaks.

I attended many well organized and excellently led meetings. People with marvellous skills in rhetoric, strategic empathy, and para-verbal aspects. But his is for further reading lists to come.