Categories
Reading List EN

RL #039: Immersive Experiences in Science Communication

Immersive experiences are very popular as a tool for science communication. Do they keep their promises?

When I was ten or eleven years old, I visited an exhibition about street children in the Global South with my school. We had previously read the book “Das Tor zum Garten der Zambranos” by Gudrun Pausewang in German class, which is about the friendship between a street boy and the son of a rich family who swap roles. The exhibition perfectly complemented the book reading, as it picked up on many of the themes. The exhibition took visitors to Latin American, Asian and African contexts, complete with reconstructed street scenes and matching artifacts. And visitors experienced the exhibition in uncomfortable improvised slippers made from car tires, as street children often wear. 

A quarter of a century later, I still remember this exhibition. But why? My guess: the combination of reading a book, a well-made exhibition and the very tactile car tire slippers was memorable enough to be remembered to this day. An immersive experience of white norther privilege, completely undigital and analog. Today, decades later, immersion is usually thought of as an interweaving of analog and digital experiences. There are numerous specialized providers who are also active in science communication. Immersive virtual reality offers huge potential for communicating science and research. The SciComm portal impact.science therefore sees virtual reality experiences as number 1 of the top 10 science communication trends of 2024. But what exactly are immersive experiences?

Immersion: what? 

The Immersive Experience Institute, a kind of think tank from California, provides useful definitions here. Those who want to delve deeper into the question of what constitutes immersive experiences and what their potential and qualities are can find peer-reviewed answers in the Journal of Network and Computer Applications. And those interested in the practical implementation level can, for example, take a look at the Copenhagen-based company Khora, with whom Oikoplus recently collaborated on an EU project submission. The creative team at Khora develops virtual reality and augmented reality for a wide range of applications. The projects in which Khora is involved show how virtual reality is also being used and researched in EU-funded research and innovation projects. For example, in the Horizon Europe project XTREME (Mixed Reality Environment for Immersive Experience of Art and Culture), which was launched in January 2024. In this project, a consortium of 14 partners is researching and developing mixed reality (MR) solutions for experiencing art.

Of course, many applications of virtual reality, augmented reality and immersive technologies are resource-intensive and costly. As a result, their field of application is often of a commercial nature. One example of this is the exhibition “Van Gogh – The Immersive Experience”, which has been successful around the world. But even here, knowledge is conveyed and brought to life.

What are the communicative benefits of immersion?

But do immersive experiences with the support of modern VR and AR technology also lead to measurable communication success? Well, the answer is not quite that simple. Research into this is being conducted selectively: Elizabeth Behm-Morawitz at the University of Missouri, for example, has investigated the effectiveness of VR as a science communication tool. However, for a very specific use case. In an article on LinkedIn, the company Imagineerium, a British provider of technology-supported immersive experiences, writes: “There has not been a great deal of research done on human psychology when exercised in an immersive experience, but some scientists and psychologists are beginning to look into it more as VR grows from strength to strength and immersion is starting to be used in learning experiences.”

It is probably not easy to say whether digital, immersive experiences are a useful communication tool. As is so often the case, it all depends. In any case, they expand the toolbox of science communication. Virtual reality and augmented reality are certainly a useful tool for many a communicative message and many a target group. But not in any case, for everyone, everywhere. 

The immersive exhibition I visited as a boy, which was completely analog and which I visited in the late 90s, is a good example of this. I remember the experience of the exhibition, but less about the actual exhibition content. But maybe that was just too long ago. 

Categories
Uncategorized

RL #038: Think like a Think Tank – Communicating with Political Impact

In this reading list, we want to look at the communication methods think tanks use to bring science into politics.

Professional providers of science communication–whether embedded in research institutions, as companies such as Oikoplus, or think tanks–aim to communicate research results clearly and transparently and make knowledge available for public debate. The target audience for this is diverse. One relevant target group that is usually among the declared addressees of science communication is political decision-makers. In this Reading List, we therefore want to focus on communication methods aimed at policymakers and take a look at think tanks.

According to Sarah Lewis from TechTarget, think tanks create a space for debate, the generation of ideas and ways to disseminate knowledge. For a target group of lawmakers and political strategists, it is not just about providing information, but to provide the basis for decisions. As Clair Grant-Salmon points out, ‘gone are the days of producing standard sets of marketing activities that we can apply to all [target audiences]’. Nowadays, think tanks need to know who they are targeting and what they want to achieve.

Policy oriented think tank work, as stated by Annapoorna Ravichander results in ‘sets of guidelines to help achieve outcomes in a reasonable manner’. They are different from processes and actions. Policies are broad and set a certain direction. While science communication may not have a direct policymaking ambition, it can play a significant role in shaping policy debates, informing decision makers and influencing the development of ideas. And there are methods which can be applied in order to achieve policy influence. 

The most central way for science communicators to achieve policy impact, is providing policymakers with expertise and consultation. Science communicators can place researchers as consultants to government agencies, providing input in the policy-making process. There is, however, a challenge in this method. According to Andrea Baertl Helguero, in order to have influence on policy through consulting, think tanks should maintain a strong intellectual transparency and ensure their research is diligent and reliable. 

Another crucial method to achieve policy influence is networking. It’s a classic method used by think tanks. As Alejandro Chaufen explains in an article for Forbes, networking allows think tanks to create platforms where ideas can be exchanged and a consensus can be build around policy agendas

A question of format

An established format for presenting research findings to policymakers are policy briefing papers. A policy brief is a concise, well-researched and informed summary of a particular issue, the policy options for addressing that issue and some recommendations. These briefs are an important tool for presenting research findings and recommendations based on them to a non-scientific audience to support decision-making. Policy briefs allow science communicators to communicate their research and findings in a way that conveys the urgency of the issue and is accessible to people with different levels of knowledge. However, here too, research institutions should ensure transparency and remain independent and transparent when presenting problems, options or proposed solutions.  

When policy impact is the declared goal of science communication, this generates  a need for anticipatory methods such as foresight and forecasting, which can help inform policy action and increase societal resilience in a sustainable way. Science communicators should take a long-term view of policy change, work over-time and build momentum for the topics and ideas they work with. Mark Halle, for International Institute for Sustainable Development, states that ‘think tanks cannot afford vagueness […]’. They must create outputs, which are clear, targeted, and incorporate a vision of long-term, positive effects.  

This text hopefully serves as a good introduction to the question of what can be learned from think tanks when it comes to achieving political impact through science communication. And this leads almost inevitably to the question of how to measure the impact of research in the first place. Fortunately, we have already dealt with this in other Readings Lists, e.g here

      Categories
      Uncategorized

      RL #037: 10 Learnings from Science Communication

      What can we learn from science communication? A reading list based on the experiences of the first five years of Oikoplus.

      1. Relevant target groups may be small.

      The success of communication is often measured in reach. Reach is also a hard currency in communication for research and innovation projects. However, science dissemination is often very specific, and it’s small target groups that are particularly relevant for successful project communication. In our Domino-E project, for example, one of the most relevant target groups is the small group of people involved in programming satellite missions for earth observation purposes. This target group is not only small, but it is also not easy to identify the communication channels through which it can be reached. However, the content for this target group is specific enough to be able to assume that the target group will find the relevant content as long as it is easy to find. So we decided to use YouTube as a channel.

      1. Simplifying does not have to mean trivializing.

      The closer you zoom in on a topic, the bigger it becomes. Many topics and issues appear straightforward at first glance, and only on closer inspection do their complexity, depth and multi-layered nature become apparent. Nevertheless, it is not wrong to take a superficial look at a topic first and only delve deeper in the second step. For experts who are extremely well-versed in a particular subject area, it is often difficult to allow this superficial view. They are too aware of the aspects that only become apparent on closer inspection. And that’s why the superficial view feels like a simplification to them, and often like a trivialization. It is important to allow simplification. But it should be correct. Our REACT project, which deals with the control of pest insect species, can be summarized easily: Insects are sterilized so that they can mate with wild-type insects in the wild without producing offspring. The insect population shrinks in the medium term due to the lack of offspring. In this way, agriculture is protected from the pest. Technically, this method involves a great deal of effort. Nevertheless, we have tried to explain the project in as simple and understandable terms as possible.

      Photo by Melanie Deziel on Unsplash
      1. The “general public” does hardly exist.

      Science communication aims to make research accessible to the general public. This broad public can therefore be found as a target group in the applications and descriptions of many research and innovation projects. However, from a communication perspective, the general public hardly exists. Addressing the public as a whole is damn difficult, or rather: it is impossible. Developing key messages and storytelling approaches automatically involves a selection of target groups. Not everyone finds everything interesting. And if you manage to meet the interests of as many different target groups as possible, that’s already a great communication success. To gain an understanding of how diverse the target groups of our communication in research and innovation projects can be, we have our project partners develop personas in interactive workshops at the start of a project. These are fictitious people who we then use to jointly consider what needs to be done to reach them through our project communication: with which messages, on which channels, when, why, and with what goal in mind? It usually becomes clear quite quickly that the general public is only an auxiliary term that indicates that each project can address many different target groups.

      1. Never underestimate how exciting any topic can be.

      How interesting a topic is sometimes isn’t obvious at first glance. No wonder: not every topic can be perceived as equally exciting, and it always depends on how a topic is presented. You could say that it is the job of science communicators like Oikoplus to ensure that a topic arouses the interest of as many people as possible. That is true. But even those who do science communication, first have to find their very own interest in a topic. This does not always happen straight away, which is why it is part of our work to actively seek out approaches to any given topic in which we recognize the potential to tell a story to a specific target group. We therefore force ourselves to be curious and to think empathetically about what the thematic appeal could be for other target groups. Sooner or later, the penny will drop – and then communication will be much easier.

      5. Even those who conduct the most exciting research don’t always like to talk about it.

      As a journalist, you sometimes have to worm the information you want to convey out of the interviewees. You have to keep asking questions because the interest in conveying information tends to be one-sided. If you’re not doing journalism, but science communication on behalf of science, then this can also happen. This can be surprising, as one would think that the dissemination of information is in the interest of both the scientists and the public and that in the role of the communicator, one only has to do the mediation work. In practice, however, we have often found that researchers sometimes do not always like to talk about their work and that even basic explanations have to be laboriously elicited from them. There is no simple solution to this problem. It is important to build trust, present your communication work as transparently as possible, and create environments in which insights into scientific work are possible. In some cases, this can be a large video shoot in a laboratory with artificial lighting and large camera equipment, and in other cases, it can be a personal one-on-one conversation. In any case, science communication does not happen by itself, even when the most exciting research is communicated.

      Photo by Gabriel Valdez on Unsplash

      6. Quality and quantity.

      In science, quality is more important than quantity. In communication, this is sometimes not so clear. When the objectives for project communication are laid down in the applications for research projects, the corresponding KPIs are often set high. After all, a proposal submission should express high ambitions. If it is approved, you then realize that the goals may have been set too high and that publications, press releases, website articles, social media postings, photos, videos, and other project dissemination content can be produced, but that it is not easy to maintain your high-quality standards. High-quality content takes time. In our video series for the REACT project, for example, we try to explain the research project as comprehensively as possible and at the same time as clearly as possible. The first of the explanatory videos can be found here. Producing such videos requires a long and detailed exchange with the researchers involved. This is why dozens of such videos cannot be produced in a project like REACT. This should also be expressed in the objectives at the start of the project.

      7. Speed is not everything in communication.

      Rome wasn’t built in a day. And also, you have to take time in science communication. In other areas of communication, in journalism, PR, and advertising, speed is often a key quality feature. And there are also moments in science communication when it is important to react quickly. But in general, science communication follows the pace of science. For press relations, for example, this means that you can free yourself a little from the temporal logic of media operations. A research topic does not lose its relevance simply because it is no longer news. If, for example, a research paper was published several weeks ago, it is not pointless from the outset to draw journalists’ attention to the paper. This is a major difference between science communication and some other fields of professional communication work.

      Photo by Bradley Pisney on Unsplash
      1. You don’t have to fully understand what you are communicating.

      At Oikoplus, we often benefit from the fact that we approach the research projects that we support in terms of communication as laypeople. The fact that we are not experts in urban development, archaeology, crop protection, satellite technology, or the energy transition has helped us to ask the right questions in the projects that we implement in these areas. After all, the fact that we don’t immediately understand the methods and innovations of our projects is something we have in common with our target groups. This is not to be understood as a hymn to trivialization. Of course, it helps to familiarize yourself with the topics that are being communicated. But you also don’t have to be afraid to bring your expertise, namely communications expertise, to projects that you initially have no idea about. Don’t be afraid of rocket science. Even rocket scientists are sometimes dependent on communication experts.

      1. Think globally, act globally.

      To make an abstract topic accessible, it is often linked to a manageable aspect of people’s everyday lives. This is a common method in journalism. To draw attention to the consequences of global climate change, for example, changes to the ecosystem are described at a local level. This creates relatability. We wrote about this in Reading List #010. So far, so useful. In our communication for European and global research projects, we sometimes lack this local or everyday level. We design communication for international target groups – after all, research is international too. The slogan “think globally, act locally” therefore often becomes “think globally, act globally” for us. In concrete terms, this means that science communication cannot always respond to the needs of different local target groups. This is where translations into dozens of different languages and a lack of mobility alone can lead to failure. Science communication takes place on an international level. As a science communicator, you often have to trust that the topics you are communicating about will find their target groups – not the other way around.

      10. Curiosity is the best driver of communication.

      If you ask us at Oikoplus what drives us, the answer is easy. It is curiosity. In German, the word for it (Neugier) is derived from the greed (Gier) for something new (Neu). We took a critical look at this in one of our last reading lists. We understand curiosity as the constant interest in new experiences, insights, and perspectives. We see it as a great privilege of science communication that we can constantly learn something new in our work, and it even largely consists of this. We enjoy doing it.

      Categories
      Reading List EN

      RL #036: OIKOPLUS: Five years of communication

      Established 18.09.2018

      Setting up a company can be risky, especially without prior experience. It requires the assistance of a tax consultant, a lawyer, and a notary. At Oikoplus, we initially established ourselves as a KG, which later became a GmbH – the appropriate legal form at the time. We have frequently reviewed and adjusted our company structure over the years. Additionally, administrative questions often arise during project handling, such as whether to subcontract or employ? Should we handle payroll accounting and bookkeeping ourselves or outsource it to external partners? Do we require a tool for travel expense accounting or is an Excel sheet sufficient? Since Oikoplus was founded, we have been preoccupied with these questions, but we have certainly learned a lot in the process. Our experience has been beneficial. When working with large organisations, universities, or corporations, we have our own contacts for administrative details. Our external colleagues may have to wait for their legal, accounting, or HR departments. In our small team, we make decisions ourselves, which we now recognise as one of our strengths.

      Some of our coffee cups went missing in 2020. We now have insurance in case we lose data. Photo: OIKOPLUS.

      Tools and Services

      Over the years, we have acquired a fleet of tools big and small. We use Mailchimp, Adobe Suite, Nextcloud, QR.io, and CANVA, among others. Additionally, we occasionally create temporary accounts with providers such as GoogleMeets, Miro, and iStock. It is surprising how many subscriptions one can accumulate over time.

      We also purchased some equipment. Initially, we used our personal computers and filmed with private cameras. Now, after five years, we have a whole armada of laptops and screens. Additionally, we have expanded our filming capabilities with camcorders, tripods, directional microphones, and clip-on mics. Finally, we have also acquired a lightbox and six boxes of Lego building bricks. We have got sthem to organise workshops that support researchers locate their own work in the vastness of a projects, make it tangible, and find narratives for their work. This brings us to the next point: the methods.

      Set-up for the kick-off meeting for the ArcheoDanube project in July 2020. A short time later, we moved into our first office. Photo: OIKOPLUS.

      Methods; or: a growing range of services

      Initially, we focused on formats and content. We exchanged ideas with our customers both internally and externally, but lacked a strategic and methodical approach. However, this has changed. Due to the complexity of the topics we communicate, we have established clear processes to ensure we are well-informed.

      Our projects begin with workshops to identify target groups, key messages, and channels with our partners. From there, we develop customised communication strategies. We conduct interviews with the scientists we support to improve our understanding and gather content for videos, social media, and blog posts. Policy briefs are no longer written alone, but developed in policy cafés together.

      Since 2022, we have also been offering workshops for finding narratives and creating communication content together. At the end, the colleagues in the picture will have built a scale. Photo: OIKOPLUS.

      Borrowing credibility

      We have always been committed to providing our partners with the best service and meeting all agreed targets. However, we have not always been successful in achieving this. One of the reasons for this is quite simple. Our partners, who are mostly established research institutions or large companies, have a wide reach and high credibility. In our early projects, we focused on establishing our own online and offline communication channels for our projects.

      A bottleneck that we quickly recognised. The answer: we need to borrow the credibility and reach of the research institutions and companies we work with. Not so easy. Because in our projects, we are perceived as the partner responsible for communicating and disseminating research achievements. It has now become one of our core tasks to explain to the teams of researchers and developers we work with how they can use their own channels or those of their institutions. Because setting up your own digital channels is simply not as easy in 2023 as it might have been a decade ago.

      Five years Oikoplus

      Our field has evolved, and we have evolved with it. We have a range of new ideas and plans. However, first, we must thank all our companions along the way. Our employees and our colleagues from SynCity and ArcheoDanube, from EnergyMeasures, Domino-E, REACT, and LifeTandems deserve special thanks. We would also like to thank the colleagues whose failed project submissions we supported. Some project applications narrowly failed. We have learned to deal with them. We would also like to thank the readers of our Reading List. While researching and writing these texts, we have repeatedly completed our thoughts and learned a lot in the process.

      Finally, a call to action: subscribe to our reading list and follow us on LinkedIn and YouTube.

      Happy holidays!

      Categories
      Reading List EN Uncategorized

      RL #035: On Innovation and Exnovation

      In the last Oikoplus Reading List, Michael Anranter took a critical look at innovation culture and innovation communication. We discussed it, and came to an entirely uninnovative solution: We repeat the whole thing, and I also write a text about innovation.

      Whatever it is, something in us craves innovation. How else could the constant drive for the new, for the better, have become such the norm? Those who do not merely reproduce in their work, but make it better, are appreciated for it. For breaking new ground, for thinking outside the box, for not standing still, for pioneering, for being creative, for game-changing, for being disruptive. Our language has many beautiful phrases and idioms for innovative thinking.

      At Oikoplus, we are constantly challenged to innovate the way we communicate science and research. And the researchers we advise and support are also constantly innovating. Sometimes it seems as if everyone is constantly challenged to reinvent the wheel.

      Exnovation: Can it go?

      Let’s start with the opposite term to innovation: Exnovation. Because it is often not the new itself that drives progress, but rather what is already there but needs to go. Our REACT project, for example, is all about innovation in the fight against insect pests. But it’s mainly about replacing the old methods – namely pesticides. So is the project driven by innovation, or by exnovation? It’s hard to say. Ultimately, it’s about two sides of the same coin. Nevertheless, exnovation often remains underlit. Jean Bartley and Lawrence Knall point this out in a 2021 article, arguing that a better understanding of exnovation makes for a better culture of innovation.

      A text by Alexander Krause on LinkedIn argues in a very similar direction. The agile coach promises that reading his text within two minutes will change the way you think. Well. Just give it a try. 

      As I read this, I think to myself: Talking about exnovation instead of just innovation doesn’t necessarily protect you from the weird business coach-speak of our time.

      New things were not always at demand

      But it wasn’t always the case that new things were valued. More than half a decade ago, I myself conducted an interview with the historian Frank Trentmann, which you can still read on Issuu. 

      In it, Trentmann tells of European traders who set out for China in the 17th century with shiploads of innovations, only to be met with incomprehension there, since the value of things there was linked to their age and proven value.

      Innovation as a creed

      That old things have a high value, we know until today. From arts and antiques, for example. When it comes to intangible things like social norms, age is not necessarily a suitable indicator of quality or acceptance. If innovation is limited to the pure communication level, phenomena such as green-, pink- or wokewashing sometimes emerge.

      Photo by Jason Blackeye on Unsplash

      And then there is even the rhetorical appeal to innovation, which merely serves to delay overdue ex-novation. It goes something like this: “We trust in technological innovations instead of bans!” You hear that occasionally, for example when it comes to climate change adaptation. Instead of replacing high-emission technologies with low-emission ones by law, i.e., top-down exovation, people wait for innovations to become established without doing much to ensure their success. 

      This is not to say that technological innovations cannot also make their contribution. But in many cases it is simply not enough to wait for innovation where exnovation has long been necessary. This could already be read in 2010 in the Harvard Business Review with reference to climate change. “Even if energy innovations have a lot of potential, they might not be deployable until it’s too late. History shows that most of the technology breakthroughs need decades to make it to the mass market.” 

      This and many other examples show that it makes perfect sense to include exnovation as a term in one’s own vocabulary. The term helps to critically scrutinize innovations. After all, there are also bad innovations. Incidentally, there is a nice word in German for the thesis in the first sentence of this text, according to which something in us craves for innovation: Neugier (engl: curiosity). The greed for something new. And no matter how critically one questions the concept of innovation. But don’t worry. At Oikoplus, we still believe that curiosity for innovation has its good sides.

      Categories
      Reading List EN Uncategorized

      RL #034: Innovation; or Conscientization

      In this Reading List, I approach innovation and the transmission of knowledge with the aim of innovation. Starting with thoughts on innovation in universities and in companies, I conclude with an alternative approach to communicating newness that goes back to Paulo Freire: conscientization.

      Innovation as mission

      Without reflection, I adopt the language of the funding and legislative bodies, of the management consultancies: Innovation and innovation communication are the be-all and end-all of a thriving location. The urge for renewal, which is etymologically inscribed in the concept of innovation, has taken on new meaning in the climate crisis. We are supposed to be innovative: all of us. Individuals, companies, and the administration. On the role of universities in this changed environment, Maximilian Vogt and Christoph Weber formulate that we can no longer avoid a science without a “New Enlightenment” and without a social mission.

      Bild von felixioncool auf Pixabay

      For companies, the question of the role is no less urgent. Somehow, however, it seems to me that companies are assumed to be quite good at social innovation anyway. It is not innovation that needs to be admonished here; rather, it is the culture of innovation. How can innovation be supported in a more targeted way? This is where innovation communication comes into play. Innovation communication is the communication of new ideas, concepts, products, services, and processes that differ from those that already exist. Innovation communication is not only a critical feature for the success of innovation but a condition for innovation itself:

      “The lonely innovator is a myth. Solo innovation does not exist. Unlike invention, it’s a team sport. Working in solitude may lead to invention, but not onnovation because it requires communication with others.”

      Alex Goryachev, Forbes Council Member

      Not surprisingly, Goryachev concludes that innovation is successful when communication is at its peak. That is, when ideas, concepts, products, services, and processes have been shared and assimilated in as diverse a team as possible in such a way that everyone involved in the innovation process is aware that they can bring about change with the innovation. The order situation is undisputed; tips and recommendations for cultivating a culture of innovation are plentiful and in all forms. For example, here, here, or here. Some of them are almost embarrassingly banal.

      Boundaries of innovation

      A comprehensive and multi-layered treatment of the concept of innovation can be found in Benoit Godin’s book “Innovation Contested: The Idea of Innovation over the Centuries”. Godin begins his journey on the topic with the ancient Greeks and, starting from there, addresses not only the successes but above all the resistance that innovation has had to experience and overcome time and again. Only excerpts of the book were freely accessible on Google Books, but reading the relevant passages was fun. Godin discusses the roles of faith and the church, as well as the initial difficulties in the collaboration between universities and companies.

      Bild von Pavlo auf Pixabay

      Ronald C. Beckett and Paul Hyland also address the limits of innovation and the communication associated with it. In their essay, the two argue that innovation happens above all where there is friction. This friction, once perceived as an obstacle, must be overcome – a communicative challenge. The authors’ response to the challenge seems to me to be too conventional, or not explicit enough. Adapting the structures that host innovation processes. Ok, but is that all?

      Innovation communication is at the limit. Or: Conscientization

      Conscientisation is a concept developed by Paulo Freire that aims to liberate people through education. People should learn to recognise and understand their own reality in order to then assess how new things can change their lives. This could be read as preparing people to participate in innovation processes. An introduction to the term, which has also found its way into the literature as critical consciousness, can be found on Wikipedia. If you want to better understand the basic framework of Freire’s thinking, watch the 8 minutes 14 seconds of “An Incredible Conversation” with Paulo Freire.

      Well done: we have now arrived at post-Marxist thinking for innovation culture and communication.

      Bild von Bach Nguyen auf Pixabay

      The use of conscientization-inspired innovation processes has recently increased again after a first peak in the 1980s: Karin Berglund and Johannson argue for a strengthening of rural areas through a culture of innovation based on conscientization among small enterprises. Juan Díasz Bordavene et al. highlight the need to integrate South American farmers into the innovation process through conscientization in order to develop sustainable solutions for the region. Hsu Meng-Jun et al. documented the life-saving acceleration of innovation processes starting from a common and shared knowledge sharing that is in line with critical conscientization.

      At the tipping point

      Actually, I didn’t want to write a pamphlet here. In the end, it has become one. My point is that, as everyone seems to be tasked with innovation, it is time to rethink approaches to innovation communication that stem from business administration. We should start with the question of who should be involved in the process. And then what language will enable everyone to express themselves adequately? If these are paintings, then they are just as legitimate as visits to the field, conversations, or Lego sessions in which a team playfully exchanges ideas about innovation. Let’s try out new ideas; also in development departments where only supposedly everyone speaks the same language.

      Categories
      Reading List EN Uncategorized

      RL #033: The Language(s) of Science

      In this Oikoplus Reading List we present good reads from the web touching on the question of language in science. Language, understood quite explicitly and rather abstractly.

      The favour of the mother tongue

      At Oikoplus, the working language in all our projects is English. When we meet contacts in our work with whom we can speak in our native languages (German, Italian, Polish, Romanian), we are always happy. Because honestly, working permanently in foreign languages can be exhausting sometimes. For people working in science and research, it is therefore a great starting advantage if their mother tongue is English. So far, so banal. It is less banal, however, to quantify how great the price is paid by all those whose mother tongue is not English, of all languages. A study by Tatsuya Amano et al. aims to do just that:

      „By surveying 908 researchers in environmental sciences, this study estimates and compares the amount of effort required to conduct scientific activities in English between researchers from different countries and, thus, different linguistic and economic backgrounds. Our survey demonstrates that non-native English speakers, especially early in their careers, spend more effort than native English speakers in conducting scientific activities, from reading and writing papers and preparing presentations in English, to disseminating research in multiple languages. Language barriers can also cause them not to attend, or give oral presentations at, international conferences conducted in English.”

      A mathematical narrative

      English is a standard language of science. Mathematics is one too. As an important tool, mathematical principles and concepts help in understanding the world. Patrick Honner gives a very clear example of this in the highly recommended Quanta Magazine. In it, he describes how networks can be described mathematically. And that in the form of a quest to puzzle over.

      Photo by <a href="https://unsplash.com/@pyssling240?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Thomas T</a> on <a href="https://unsplash.com/photos/OPpCbAAKWv8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>

      When narratives disappear

      Mathematics describes the world in a strictly formal way. That is its essence and its task. The world can be described less formally in narratives and legends. Just as mathematics looks back on thousands of years of history, which, interestingly enough, is better told as a narrative, there are countless legends and narratives that are ancient and whose future is threatened. And this is because the languages in which they are told are at stake of extinction. Alexandra Aikhenvald explores how the loss of linguistic diversity is threatened by the extinction of indigenous languages worldwide, and why the loss of stories, legends and myths that comes with it is a problem. 

      Accurately describe or narrate?

      Accurate, scientific descriptions of the world often appear as the antithesis of narrative descriptions. The tendency towards storytelling in communication – also in science communication – is therefore often criticised. Thinking of the world in terms of narratives is described as a trend of recent years. The term narrative itself, belongs in every buzzword bingo of professional communication work. Whether rightly or wrongly – that is not to be clarified here. The literary scholar Florian Scherbül gives a readable overview of the debate about the pros and cons of the narrative form in describing the world in a contribution to the online portal geschichtedergegenwart.at (in German language, only). 

      We hope we have found the right language in this Reading List, and that in our forays through the internet over the last few weeks we have once again uncovered a few articles that not only pique our interest.

      Categories
      Reading List EN Uncategorized

      RL #032: Storytelling in Crisis Communication

      Storytelling is considered an effective communication method because it engages narratives, which our brains are specifically wired to understand. Similarly in science communication, storytelling translates complex concepts into accessible and comprehensible ideas. What happens, however, in situations of intense difficulties or emergency, which cause hardships, anxiety and distress? These crisis situations draw us more towards facts that ensure security rather that anecdotes that evoke empathy. This reading list focuses on answering that question by analysing how storytelling can still be an effective strategy to bring relevant information to the general public through looking at crisis situations. 

      The Basics

      According to Powell and Mantel, researchers writing for an online magazine ‘The Conversation’, storytelling, which is the description of ideas through narratives that evoke powerful emotions, is a powerful way to share ideas in a relatable and easily understood way. Today stories can be created in many ways also digitally through photos, videos or audio clips. Storytelling is effective because, according to Forbes, it explains factual information in a way that resonates with audiences. If a narrative resonates with you, it affects the way you remember, retain and use the information at hand.

      Crisis situations

      Crisis situations are, however, different. That is because these are stress inducing situations, where our brain becomes more neurotic, hurried, irrational, all of which affect our decision making and attention. Generally in this type of circumstance, it would be logical to say that in stressful situations we are more drawn to quickly accessible and short informative snippets of news rather than extensive narratives. However, is that truly so?  

      According to neuroscientists Heim and Keil, today, due to the abundance of digital devices, people are forced to process information at a higher speed. Despite that, however, research has shown that our brains are built to adjust to the changing world. In fact our brain learn to focus on events, experiences or information, which are really important or meaningful to us. Our brain learns to pick out a few things that we see or hear and examine them more closely to make sense of them. These ‘few things’ will,most likely, be embedded in a story or a narrative. There are a few reasons for that. Firstly, as mentioned before, our brains are wired to be drawn to relatable narratives. Secondly, however, according to Rachel Bartlett, a writer at Shorthand online blog, crisis situation often includes an overwhelming amount of intricate details and storytelling, especially visual storytelling, makes this volumes of data easier to digest and process.

      From story to action

      In addition to easing our understanding of complex concepts, storytelling, as stated by Seeger and Sellnow in their book ‘Narratives of Crisis’, allows us to place current crisis circumstances in a larger context or meaning and thus in a wider perspective. This leads to improved critical thinking and situational assessment causing  deeper rooted responses, which can result in long-term social changes.  Supporting this claim is Emily Falk, professor of communication, psychology and marketing, for Los Angeles Times, who states that although storytelling alone cannot produce social transformation, it is a method of effective communication, which triggers an active response. Narratives give us a new way of seeing the world and motivate us to learn, make, react and care. Good stories share knowledge in a way that stimulates action for example it can influence policy, stimulate community action, give voices to the marginalized or motivate a well organised movement. 

      Due to its abundance of formats and styles, storytelling is an effective method of communication in many different situations. This means that even in crisis situations, where our brains, due to hormonal responses, are in a much more agitated state, stories can still transmit important information, facts and figures. More so, instead of bombarding us with news, storytelling engages our senses and leads to a more active and critical response, which has the potential to bring social change. 

      Categories
      Reading List EN Uncategorized

      RL #031: Artificial Intelligence in Science

      Many tips have been shared over the past weeks and months. This one is the perfect AI for research, and the other is the perfect AI for editing texts. Ideas for the best prompts for semantics-based generative AIs are flooding Twitter, Reddit, and the like. In this Reading List, we don’t want to give tips on which AI can be used for what. For a reading list, that doesn’t make much sense at the moment, not least because of the fast pace of technological development. We also don’t want to report on how AI can have an impact on science communication. We already did that last summer in Reading List #021. Rather, we have collected a few texts on thoughts about how AI could change science in the coming years. Enjoy reading!

      Artificial intelligence with an overview

      One of the biggest challenges of science, regardless of discipline, is keeping up with the flood of articles. 70,000 publications deal with the protein p53, according to the think tank Enago. This is the first I’ve heard of it today. Apparently, it is relevant for the early detection of tumors. In 1993, it was voted “Molecule of the Year”. On the occasion of this anniversary, an AI of my choice finds the following review: “The first 30 years of p53: growing ever more complex” by Arnold J Levine and Moshe Oren (paywall). In fact, there are now a number of tools that claim to find articles and present them in their respective publication context. The start has been made.

      Disruptive Artificial Intelligence

      With the newly gained overview, the quality of results and outcomes can also be reclassified. And this also applies outside of science. In an interview with Digitale Welt, Prof. Mario Trapp, director of the Fraunhofer Institute for Cognitive Systems IKS, remarks: “Even if you can still have the results of AI checked for plausibility by doctors today, this will hardly be possible in the future because of the increasing complexity.” The choice of words is exciting: Trained people can still check the plausibility of results. This will probably no longer be possible for a long time.

      As a new key technology with a broad spectrum of applications (even if all references and points of reference so far point to medicine), universities are now facing investment hype for the third time since the 1950s and 1970s. This time, multidisciplinary research in step with action (i.e. industry) and politics is particularly in demand. At least that is the argument of Y. K Dwivedi et al. in an opinion paper published in the International Journal of Information Management. More applied, and with a focus on the extent to which the greatly altered interests brought about by AI interact with media, industry, and research, G. Berman, K. Williams, and S. Michalska argue in their study that research in the field of artificial intelligence functions differently than in other fields.

      Proactive Artificial Objectivity

      AIs help to keep track of things, they flush new money into the universities’ coffers. Overwhelmed, I return to medicine and to an article from 2018. On the Science Blog – Kaleidoscope for Science, Norbert Bischofberger wrote a fascinating article entitled “With artificial intelligence to a proactive medicine? A question that applies in a modified form to all disciplines today?

      At that time, Bischofberger concluded that we might soon no longer “react” but proactively take care of ourselves. Five years later, knowledge production could soon be taken proactively into the hands of AIs. The question is whether an objective understanding of science will play into our hands. We will see.

      Categories
      Reading List EN Uncategorized

      RL #030: Beyond Comparing Numbers: Qualitative Research Assessment 

      It can be argued well and lengthy about what is appropriate when it comes to evaluating the relevance, quality and significance of research work and making it measurable. The selected good reads encompass a range of perspectives, including open access repositories, research impact assessment, research evaluation projects, comprehensive assessment methods, and research grant evaluation. 

      For once, let’s not start with theory work, but in a very practical way. The “Your Impact” research guide by the University of Illinois at Chicago (UIC) offers comprehensive information on evaluating research impact. It covers various metrics, tools, and methodologies to assess the societal, academic, and economic impacts of research. This guide provides practical advice to researchers, librarians, and administrators on navigating the complex landscape of research evaluation, empowering them to demonstrate the value and significance of their work.

      Choose your methods wisely – they might be assessed

      Of course, the choice of method always influences the results. And this also applies to the methods used to measure the impact of science. A recent project on evaluating research conducted by RAND Europe aims to improve understanding and methodologies for assessing research quality and impact. Their website offers insights into ongoing projects, publications, and tools related to research evaluation. RAND Europe’s expertise in research evaluation provides valuable insights for policymakers, funding agencies, and research institutions seeking to enhance evaluation practices and inform evidence-based decision-making.

      If you are looking for a clear and theoretically sound introduction to the topic of research evaluation, Evaluating Research in Context: A Method for Comprehensive Assessment by Jack Spaapen, Huub Dijstelbloem and Frank Wamelink from 2007 is recommended. The focus is on one thing, as the title suggests: Context. The right context is important if not only publications in journals and their ranking values are to be counted. Contextual consideration is crucial in science impact assessment. Research takes place within diverse fields, each with its own objectives, methodologies, and timelines. Therefore, relying solely on universal indicators may oversimplify the evaluation process and fail to capture the nuances of different disciplines. By accounting for the contextual aspects, such as field-specific metrics, geographic factors, and research goals, a more accurate assessment of impact can be achieved.

      Assessment of research should recognise diversity of outputs, practices and activities

      At Oikoplus, we work in a number of projects funded or co-funded by Horizon Europe, the European Union’s research and innovation program. This raises a very practical question: How does the EU measure the impact of the projects it (co-)funds? The EU Commission calls its new impact monitoring framework ‘Key Impact Pathways’. A recent working document provides an insight into the various indicators used by the EU Commission to evaluate projects.

      Science impact assessment is essential for evaluating the broader influence and value of research.

      When it comes to evaluation and measurability, it is obvious to operationalize success in numbers. However, there is no scheme for this operationalization that can represent the different types of scientific practice in a comparable way. Researchers are aware of this. One answer to the problem is the Coalition for Advancing Research Assessment (CoARA). Hundreds of universities, institutes, and scientific institutions have already joined the Coalition, united by the vision “that the assessment of research, researchers and research organisations recognises the diverse outputs, practices and activities that maximise the quality and impact of research. This requires basing assessment primarily on qualitative judgement, for which peer review is central, supported by responsible use of quantitative indicators.”

      Research assessment should always consider the indicators used and the specific context of the research being assessed. By adopting a comprehensive and contextual approach to impact assessment, stakeholders can gain a more nuanced understanding of research outcomes, encourage diverse research pathways, and make informed decisions to support the advancement of science and its positive societal impact.