Categories
Reading List EN Uncategorized

RL #034: Innovation; or Conscientization

In this Reading List, I approach innovation and the transmission of knowledge with the aim of innovation. Starting with thoughts on innovation in universities and in companies, I conclude with an alternative approach to communicating newness that goes back to Paulo Freire: conscientization.

Innovation as mission

Without reflection, I adopt the language of the funding and legislative bodies, of the management consultancies: Innovation and innovation communication are the be-all and end-all of a thriving location. The urge for renewal, which is etymologically inscribed in the concept of innovation, has taken on new meaning in the climate crisis. We are supposed to be innovative: all of us. Individuals, companies, and the administration. On the role of universities in this changed environment, Maximilian Vogt and Christoph Weber formulate that we can no longer avoid a science without a “New Enlightenment” and without a social mission.

Bild von felixioncool auf Pixabay

For companies, the question of the role is no less urgent. Somehow, however, it seems to me that companies are assumed to be quite good at social innovation anyway. It is not innovation that needs to be admonished here; rather, it is the culture of innovation. How can innovation be supported in a more targeted way? This is where innovation communication comes into play. Innovation communication is the communication of new ideas, concepts, products, services, and processes that differ from those that already exist. Innovation communication is not only a critical feature for the success of innovation but a condition for innovation itself:

“The lonely innovator is a myth. Solo innovation does not exist. Unlike invention, it’s a team sport. Working in solitude may lead to invention, but not onnovation because it requires communication with others.”

Alex Goryachev, Forbes Council Member

Not surprisingly, Goryachev concludes that innovation is successful when communication is at its peak. That is, when ideas, concepts, products, services, and processes have been shared and assimilated in as diverse a team as possible in such a way that everyone involved in the innovation process is aware that they can bring about change with the innovation. The order situation is undisputed; tips and recommendations for cultivating a culture of innovation are plentiful and in all forms. For example, here, here, or here. Some of them are almost embarrassingly banal.

Boundaries of innovation

A comprehensive and multi-layered treatment of the concept of innovation can be found in Benoit Godin’s book “Innovation Contested: The Idea of Innovation over the Centuries”. Godin begins his journey on the topic with the ancient Greeks and, starting from there, addresses not only the successes but above all the resistance that innovation has had to experience and overcome time and again. Only excerpts of the book were freely accessible on Google Books, but reading the relevant passages was fun. Godin discusses the roles of faith and the church, as well as the initial difficulties in the collaboration between universities and companies.

Bild von Pavlo auf Pixabay

Ronald C. Beckett and Paul Hyland also address the limits of innovation and the communication associated with it. In their essay, the two argue that innovation happens above all where there is friction. This friction, once perceived as an obstacle, must be overcome – a communicative challenge. The authors’ response to the challenge seems to me to be too conventional, or not explicit enough. Adapting the structures that host innovation processes. Ok, but is that all?

Innovation communication is at the limit. Or: Conscientization

Conscientisation is a concept developed by Paulo Freire that aims to liberate people through education. People should learn to recognise and understand their own reality in order to then assess how new things can change their lives. This could be read as preparing people to participate in innovation processes. An introduction to the term, which has also found its way into the literature as critical consciousness, can be found on Wikipedia. If you want to better understand the basic framework of Freire’s thinking, watch the 8 minutes 14 seconds of “An Incredible Conversation” with Paulo Freire.

Well done: we have now arrived at post-Marxist thinking for innovation culture and communication.

Bild von Bach Nguyen auf Pixabay

The use of conscientization-inspired innovation processes has recently increased again after a first peak in the 1980s: Karin Berglund and Johannson argue for a strengthening of rural areas through a culture of innovation based on conscientization among small enterprises. Juan Díasz Bordavene et al. highlight the need to integrate South American farmers into the innovation process through conscientization in order to develop sustainable solutions for the region. Hsu Meng-Jun et al. documented the life-saving acceleration of innovation processes starting from a common and shared knowledge sharing that is in line with critical conscientization.

At the tipping point

Actually, I didn’t want to write a pamphlet here. In the end, it has become one. My point is that, as everyone seems to be tasked with innovation, it is time to rethink approaches to innovation communication that stem from business administration. We should start with the question of who should be involved in the process. And then what language will enable everyone to express themselves adequately? If these are paintings, then they are just as legitimate as visits to the field, conversations, or Lego sessions in which a team playfully exchanges ideas about innovation. Let’s try out new ideas; also in development departments where only supposedly everyone speaks the same language.

Categories
Reading List EN Uncategorized

RL #033: The Language(s) of Science

In this Oikoplus Reading List we present good reads from the web touching on the question of language in science. Language, understood quite explicitly and rather abstractly.

The favour of the mother tongue

At Oikoplus, the working language in all our projects is English. When we meet contacts in our work with whom we can speak in our native languages (German, Italian, Polish, Romanian), we are always happy. Because honestly, working permanently in foreign languages can be exhausting sometimes. For people working in science and research, it is therefore a great starting advantage if their mother tongue is English. So far, so banal. It is less banal, however, to quantify how great the price is paid by all those whose mother tongue is not English, of all languages. A study by Tatsuya Amano et al. aims to do just that:

„By surveying 908 researchers in environmental sciences, this study estimates and compares the amount of effort required to conduct scientific activities in English between researchers from different countries and, thus, different linguistic and economic backgrounds. Our survey demonstrates that non-native English speakers, especially early in their careers, spend more effort than native English speakers in conducting scientific activities, from reading and writing papers and preparing presentations in English, to disseminating research in multiple languages. Language barriers can also cause them not to attend, or give oral presentations at, international conferences conducted in English.”

A mathematical narrative

English is a standard language of science. Mathematics is one too. As an important tool, mathematical principles and concepts help in understanding the world. Patrick Honner gives a very clear example of this in the highly recommended Quanta Magazine. In it, he describes how networks can be described mathematically. And that in the form of a quest to puzzle over.

Photo by <a href="https://unsplash.com/@pyssling240?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Thomas T</a> on <a href="https://unsplash.com/photos/OPpCbAAKWv8?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>

When narratives disappear

Mathematics describes the world in a strictly formal way. That is its essence and its task. The world can be described less formally in narratives and legends. Just as mathematics looks back on thousands of years of history, which, interestingly enough, is better told as a narrative, there are countless legends and narratives that are ancient and whose future is threatened. And this is because the languages in which they are told are at stake of extinction. Alexandra Aikhenvald explores how the loss of linguistic diversity is threatened by the extinction of indigenous languages worldwide, and why the loss of stories, legends and myths that comes with it is a problem. 

Accurately describe or narrate?

Accurate, scientific descriptions of the world often appear as the antithesis of narrative descriptions. The tendency towards storytelling in communication – also in science communication – is therefore often criticised. Thinking of the world in terms of narratives is described as a trend of recent years. The term narrative itself, belongs in every buzzword bingo of professional communication work. Whether rightly or wrongly – that is not to be clarified here. The literary scholar Florian Scherbül gives a readable overview of the debate about the pros and cons of the narrative form in describing the world in a contribution to the online portal geschichtedergegenwart.at (in German language, only). 

We hope we have found the right language in this Reading List, and that in our forays through the internet over the last few weeks we have once again uncovered a few articles that not only pique our interest.

Categories
Reading List EN Uncategorized

RL #032: Storytelling in Crisis Communication

Storytelling is considered an effective communication method because it engages narratives, which our brains are specifically wired to understand. Similarly in science communication, storytelling translates complex concepts into accessible and comprehensible ideas. What happens, however, in situations of intense difficulties or emergency, which cause hardships, anxiety and distress? These crisis situations draw us more towards facts that ensure security rather that anecdotes that evoke empathy. This reading list focuses on answering that question by analysing how storytelling can still be an effective strategy to bring relevant information to the general public through looking at crisis situations. 

The Basics

According to Powell and Mantel, researchers writing for an online magazine ‘The Conversation’, storytelling, which is the description of ideas through narratives that evoke powerful emotions, is a powerful way to share ideas in a relatable and easily understood way. Today stories can be created in many ways also digitally through photos, videos or audio clips. Storytelling is effective because, according to Forbes, it explains factual information in a way that resonates with audiences. If a narrative resonates with you, it affects the way you remember, retain and use the information at hand.

Crisis situations

Crisis situations are, however, different. That is because these are stress inducing situations, where our brain becomes more neurotic, hurried, irrational, all of which affect our decision making and attention. Generally in this type of circumstance, it would be logical to say that in stressful situations we are more drawn to quickly accessible and short informative snippets of news rather than extensive narratives. However, is that truly so?  

According to neuroscientists Heim and Keil, today, due to the abundance of digital devices, people are forced to process information at a higher speed. Despite that, however, research has shown that our brains are built to adjust to the changing world. In fact our brain learn to focus on events, experiences or information, which are really important or meaningful to us. Our brain learns to pick out a few things that we see or hear and examine them more closely to make sense of them. These ‘few things’ will,most likely, be embedded in a story or a narrative. There are a few reasons for that. Firstly, as mentioned before, our brains are wired to be drawn to relatable narratives. Secondly, however, according to Rachel Bartlett, a writer at Shorthand online blog, crisis situation often includes an overwhelming amount of intricate details and storytelling, especially visual storytelling, makes this volumes of data easier to digest and process.

From story to action

In addition to easing our understanding of complex concepts, storytelling, as stated by Seeger and Sellnow in their book ‘Narratives of Crisis’, allows us to place current crisis circumstances in a larger context or meaning and thus in a wider perspective. This leads to improved critical thinking and situational assessment causing  deeper rooted responses, which can result in long-term social changes.  Supporting this claim is Emily Falk, professor of communication, psychology and marketing, for Los Angeles Times, who states that although storytelling alone cannot produce social transformation, it is a method of effective communication, which triggers an active response. Narratives give us a new way of seeing the world and motivate us to learn, make, react and care. Good stories share knowledge in a way that stimulates action for example it can influence policy, stimulate community action, give voices to the marginalized or motivate a well organised movement. 

Due to its abundance of formats and styles, storytelling is an effective method of communication in many different situations. This means that even in crisis situations, where our brains, due to hormonal responses, are in a much more agitated state, stories can still transmit important information, facts and figures. More so, instead of bombarding us with news, storytelling engages our senses and leads to a more active and critical response, which has the potential to bring social change. 

Categories
Reading List EN Uncategorized

RL #031: Artificial Intelligence in Science

Many tips have been shared over the past weeks and months. This one is the perfect AI for research, and the other is the perfect AI for editing texts. Ideas for the best prompts for semantics-based generative AIs are flooding Twitter, Reddit, and the like. In this Reading List, we don’t want to give tips on which AI can be used for what. For a reading list, that doesn’t make much sense at the moment, not least because of the fast pace of technological development. We also don’t want to report on how AI can have an impact on science communication. We already did that last summer in Reading List #021. Rather, we have collected a few texts on thoughts about how AI could change science in the coming years. Enjoy reading!

Artificial intelligence with an overview

One of the biggest challenges of science, regardless of discipline, is keeping up with the flood of articles. 70,000 publications deal with the protein p53, according to the think tank Enago. This is the first I’ve heard of it today. Apparently, it is relevant for the early detection of tumors. In 1993, it was voted “Molecule of the Year”. On the occasion of this anniversary, an AI of my choice finds the following review: “The first 30 years of p53: growing ever more complex” by Arnold J Levine and Moshe Oren (paywall). In fact, there are now a number of tools that claim to find articles and present them in their respective publication context. The start has been made.

Disruptive Artificial Intelligence

With the newly gained overview, the quality of results and outcomes can also be reclassified. And this also applies outside of science. In an interview with Digitale Welt, Prof. Mario Trapp, director of the Fraunhofer Institute for Cognitive Systems IKS, remarks: “Even if you can still have the results of AI checked for plausibility by doctors today, this will hardly be possible in the future because of the increasing complexity.” The choice of words is exciting: Trained people can still check the plausibility of results. This will probably no longer be possible for a long time.

As a new key technology with a broad spectrum of applications (even if all references and points of reference so far point to medicine), universities are now facing investment hype for the third time since the 1950s and 1970s. This time, multidisciplinary research in step with action (i.e. industry) and politics is particularly in demand. At least that is the argument of Y. K Dwivedi et al. in an opinion paper published in the International Journal of Information Management. More applied, and with a focus on the extent to which the greatly altered interests brought about by AI interact with media, industry, and research, G. Berman, K. Williams, and S. Michalska argue in their study that research in the field of artificial intelligence functions differently than in other fields.

Proactive Artificial Objectivity

AIs help to keep track of things, they flush new money into the universities’ coffers. Overwhelmed, I return to medicine and to an article from 2018. On the Science Blog – Kaleidoscope for Science, Norbert Bischofberger wrote a fascinating article entitled “With artificial intelligence to a proactive medicine? A question that applies in a modified form to all disciplines today?

At that time, Bischofberger concluded that we might soon no longer “react” but proactively take care of ourselves. Five years later, knowledge production could soon be taken proactively into the hands of AIs. The question is whether an objective understanding of science will play into our hands. We will see.

Categories
Reading List EN Uncategorized

RL #030: Beyond Comparing Numbers: Qualitative Research Assessment 

It can be argued well and lengthy about what is appropriate when it comes to evaluating the relevance, quality and significance of research work and making it measurable. The selected good reads encompass a range of perspectives, including open access repositories, research impact assessment, research evaluation projects, comprehensive assessment methods, and research grant evaluation. 

For once, let’s not start with theory work, but in a very practical way. The “Your Impact” research guide by the University of Illinois at Chicago (UIC) offers comprehensive information on evaluating research impact. It covers various metrics, tools, and methodologies to assess the societal, academic, and economic impacts of research. This guide provides practical advice to researchers, librarians, and administrators on navigating the complex landscape of research evaluation, empowering them to demonstrate the value and significance of their work.

Choose your methods wisely – they might be assessed

Of course, the choice of method always influences the results. And this also applies to the methods used to measure the impact of science. A recent project on evaluating research conducted by RAND Europe aims to improve understanding and methodologies for assessing research quality and impact. Their website offers insights into ongoing projects, publications, and tools related to research evaluation. RAND Europe’s expertise in research evaluation provides valuable insights for policymakers, funding agencies, and research institutions seeking to enhance evaluation practices and inform evidence-based decision-making.

If you are looking for a clear and theoretically sound introduction to the topic of research evaluation, Evaluating Research in Context: A Method for Comprehensive Assessment by Jack Spaapen, Huub Dijstelbloem and Frank Wamelink from 2007 is recommended. The focus is on one thing, as the title suggests: Context. The right context is important if not only publications in journals and their ranking values are to be counted. Contextual consideration is crucial in science impact assessment. Research takes place within diverse fields, each with its own objectives, methodologies, and timelines. Therefore, relying solely on universal indicators may oversimplify the evaluation process and fail to capture the nuances of different disciplines. By accounting for the contextual aspects, such as field-specific metrics, geographic factors, and research goals, a more accurate assessment of impact can be achieved.

Assessment of research should recognise diversity of outputs, practices and activities

At Oikoplus, we work in a number of projects funded or co-funded by Horizon Europe, the European Union’s research and innovation program. This raises a very practical question: How does the EU measure the impact of the projects it (co-)funds? The EU Commission calls its new impact monitoring framework ‘Key Impact Pathways’. A recent working document provides an insight into the various indicators used by the EU Commission to evaluate projects.

Science impact assessment is essential for evaluating the broader influence and value of research.

When it comes to evaluation and measurability, it is obvious to operationalize success in numbers. However, there is no scheme for this operationalization that can represent the different types of scientific practice in a comparable way. Researchers are aware of this. One answer to the problem is the Coalition for Advancing Research Assessment (CoARA). Hundreds of universities, institutes, and scientific institutions have already joined the Coalition, united by the vision “that the assessment of research, researchers and research organisations recognises the diverse outputs, practices and activities that maximise the quality and impact of research. This requires basing assessment primarily on qualitative judgement, for which peer review is central, supported by responsible use of quantitative indicators.”

Research assessment should always consider the indicators used and the specific context of the research being assessed. By adopting a comprehensive and contextual approach to impact assessment, stakeholders can gain a more nuanced understanding of research outcomes, encourage diverse research pathways, and make informed decisions to support the advancement of science and its positive societal impact.

Categories
Reading List EN Uncategorized

RL #029: Cartography as a Place of Exchange Between Citizens and Experts

The ability to understand one’s immediate surroundings has always been an extremely important skill. For this reason, humanity has spent thousands of years developing and perfecting the craft of representing spatial information including routes or landforms. In today’s age of modern technology, however, the amount and variety of information that needs to be mapped are increasing. Nowadays the ability to have a grasp on our surroundings is proving more complex. This reading list will therefore explore how cartography turns out to be useful to facilitate knowledge exchanges and how it can serve as a vehicle for critical thinking.

Explaining Cartography

Cartography is the practice of map-making. Originally cartographers graphically represented spatial or geographical data but are now faced with having to translate diverse figures from multiple sensors and multiple origins. According to Elik Eizenberg in Forbes technology online magazine, we find ourselves swimming in data (and should care about it). As we can’t fully harness all data, the data scientists’ continuation of collecting new data, slowly loses meaning. Mapping, Georg Gartner argues in an article for Ersi, the global leader in geographic information systems, bridges between human users and all this data. It uses visualization to make science approachable to the public, fully unleashing its potential. 

Point cloud of slope failures in Sensuikyo Valley by LIDAR a tool in modern 3d cartography. Source: https://www.unearthlabs.com/blogs/modern-cartography

From Knowledge Reception to Knowledge Exchange

Empowering citizens to make informed decisions can also have another effect, namely mutual information exchange. Originally cartographers collect data from various measuring tools such as aerial photographs, remote sensing, field observations, or coordinate lists. This data, however, as mentioned by Horizon 2020-funded WeObserve, has a scarce update date due to increased costs and timely data validation procedures. Today, considering the increased complexity of data, cartographers also turn to alternative sources such as citizens.

Interactive exploration of good and bad governments worldwide by GOV DNA. Source: https://govdna.sudox.nl/#layout/geo/country/WRL/x/32/y/5/z/8/a/0
Interactive exploration of good and bad governments worldwide by GOV DNA. Source: https://govdna.sudox.nl/#layout/geo/country/WRL/x/32/y/5/z/8/a/0
Interactive exploration of good and bad governments worldwide by GOV DNA. Source: https://govdna.sudox.nl/#layout/geo/country/WRL/x/32/y/5/z/8/a/0

According to Caroline Anstey for The New York Times, this new shift towards crowdsourcing information is immensely useful to cartography. Citizens provide both quantitative, but also qualitative data often omitted by cartographers. The citizens’ expertise comes from living in one place for a prolonged period of time. Changes in demographics, environment, human relations, or even housing habits are useful to mapping projects as they can translate into policies or planning decisions. To build trust underlying this exchange, cartographers should provide citizens with clear and understandable information.  

Cartography as a Vehicle for Critical Thinking

According to Sukhmani Mantel for The Conversation, visually mapping relations allows information to engage multiple senses and become relevant to daily life. And indeed, citizens are able to handle novel concepts with an extensive social and cross-cultural understanding. This is what Aleks Buczkowski explains in his piece written for GeoAwesome, the world’s largest geospatial community.

Essentially, Stevenson et al., from Stockholm Environment Institute, claim in an SEI Brief about extreme citizen science approaches in digital mapping, that people from mapping practices, no matter their education level, gain the ability to understand the developing world. This supports their chances to better participate in it also on a more general level: previously excluded groups become aware of how they can co-create and get involved. They now contribute to scientific research, so-called citizen science.

Forensic architecture embedded photographs and videos to reconstruct the story of a single battle during 2014 Gaza War
Forensic architecture embedded photographs and videos to reconstruct the story of a single battle during 2014 Gaza War. Source: https://www.gold.ac.uk/news/forensic-architecture-ica/

As stated by Fraisl, Heyl, and Hager, researchers at Institute for Applied System Analysis, citizen science is important for the democratization of the scientific field. At the same time, it plays a role in empowering citizens to make informed decisions about their surroundings. This way, as mentioned by Organisation for Security and Co-operation in Europe, authoritative power becomes decentralized and decision-makers can be held accountable for their actions.

Conclusion

Obtaining accurate cartographic data through crowdsourcing is something that is in its early stages, but is increasingly practiced. Especially because now citizens have increasingly more opportunities to use tools, which give them access to global data. On an entrepreneurial scale, this is already taking place. The Domino-E project, which focuses on developing a federation layer optimising the availability of Earth observation data, builds on interoperability and knowledge sharing. Knowledge sharing generates knowledge creation, which is why it is important for cartographers to bet for information exchange as it benefits both them and citizens equally.