Categories
Reading List EN

RL #024: Hands-on: Gamification in Archeo-Tourism

This Oikoplus Reading List is not about a specific issue in the field of Science Communication and Research Dissemination, for once. This Oikoplus Reading List is about one of our own projects.

In the past two years we have learned a lot about archaeology through the participation of our association Sustainication e.V. (a quasi subsidary of Oikoplus) in the Interreg project ArcheoDanube. And about the exciting challenge of using archaeology to develop sustainable tourism concepts. 

After two and a half intensive project years, ArcheoDanube will come to an end in 2022. In mid-November, the Closing Conference took place in the Slovenian city of Ptuj. The different institutions involved in the project from 11 countries of the Danube Region presented the results of the project. These include not only Guidelines for Local Archeo Plans as a vehicle for sustainable archeotourism, but also concrete local pilot actions in which the concept of Archaeological Parks was and will be tested.

But what does ArcheoDanube have to do with science communication and Oikoplus? Well … plenty. Because embedding archaeology in tourism concepts requires the commmunication of research results – adapted to a specific place and specific target groups. The Sustainication/Oikoplus team was able to contribute to the project not only by writing an e-handbook on archaeological site management, but also by participating in three think tank workshops evaluating Local Action Plans in Szombathely (HU), Pilsen (CZ) and X (HR). 

Digital Tools for ArcheoTourism Gamification

And: We have developed a mobile app. The app ArcheoTales for Android and iOS, which was developed together with the Graz-based company Softwaregärtner, allows visitors to archaeological sites and museums to be sent on digital scavenger hunts. This allows cultural tourism providers and operators of heritage sites to offer didactically and playfully prepared content to different target groups. And visitors can experience the exhibition in the form of a puzzle game at their own, individual pace. Here, visitors communicate via mobile app with fictional characters in a mass-ger interface. 

Another digital tool developed in the ArcheoDanube project is Yesterday-Today-Tomorrow. It is specifically aimed at cities and municipalities that have cultural heritage and archaeological sites and are looking for assistance in creating a tourism concept in the form of an archeopark. 

In the ArcheoTales project, we have been able to learn an immense amount about archaeology and the cultural history of the Danube region, visit wonderful places with cultural tourism treasures, and meet fantastic colleagues from 11 countries. In the process, we made new friends and learned what good science communication can do in a field that was completely new to us – and how much fun it is to do it.

Categories
Reading List EN

RL #023: To the point: presenting scientific content

July and September are conference months in Europe. During the day, the sun is pleasantly high and outdoor and indoor areas can be used without much extra effort. The mood is good, almost exuberant. At most universities, teaching has either just ended or not yet begun. It is holiday time and depending on the place and interest, some add 2-3 days to the conference. There are others who come sooner. Besides the pleasant setting, however, conferences are also those moments in a scientific career when you need to generate attention for yourself and your scientific work. In a highly fluid context, you get to know your closest allies, your co-authors, and future superiors. In order to do this, however, you have to convince them with your ideas. And that means, above all, getting to the point. This is exactly what this reading list is about.

Photo by Mikael Kristenson on Unsplash

Getting to the point: English as a twofold barrier

To get to the point means first of all to leave out everything unnecessary. No details but only what is most important for your argument should be articulated. Synonyms are ‘to say something clearly’, ‘to be frank’, ‘not to hide something’, ‘to be clear’, and ‘to express yourself unambiguously’. Not that easy when much of the communication is in a foreign language. In Nature’s career column, Roey Elnathan 2021 (paywall) called for broad-based mentoring programs for aspiring and experienced scientists who publish in foreign languages. According to Elnathan’s, precision and accuracy cannot be achieved otherwise.

But English is only the current lingua franca of science. In the video podcast Languages in Science by MetodieStrategie, Timothy E.L Douglas explains that we have already experienced Latin, German, and French as scientific languages since the 17th century. He speaks for the European-Western and international science community. Most recently, Douglas says, science has become more linguistically diverse again.

Photo by Joshua Hoehne on Unsplash

Another important point Douglas makes in the podcast concerns the target audience. And here, it seems, native English speakers often find it most difficult to adapt their own language skills to the community. As with writing readable academic texts, knowing your listeners and readers is a prerequisite. They define the framework for the infamous point to which we should bring our argumentation. Complaining at a high level?

I am designing a presentation. So what should be brought to the point?

In short: everything! The introduction, your research question, and, if available, your hypotheses. The methodology. The visual material and your argumentation. No detail that is not needed, no subordinate clause too much. Short sentences delivered at speaking speed, not reading speed, with pauses for breath. Because many present their arguments in combination with text, images, and visualized data, here a reminder: get to the point!

First of all, it should be noted that diagrams, graphs, and also photographs are permissible for communicating knowledge and content within peer groups. At least, that is what Laura Perini argues in Visual Representations and Confirmation (paywall). The images and visual representations that Perini classifies as for the science community are thus unlike the images representing science that the Max Plank Society, for example, offers for sale. They have no point, but aesthetic value? Again, the question of the listeners applies. A picture to trace the history and context, a map to locate, and a graph to show statistical distributions. To keep the latter clear, here are a few meaningful visualizations and the University of York’s DIY Wiki.

Photo by David Pisnoy on Unsplash

Focus on your particular interest: Get feedback, collect ideas and suggestions, forge alliances

Last but not least a tip; a suggestion. After my own first experience on the conference floor, I quickly realized that I sometimes don’t get the kind of feedback I would need. But if your presentation was an argument to the point, then you can expect the same from your listeners. Give them a question to ask. Share what has been on your mind since your last learning and invite them to think along with you. Your own needs should be brought to the point as well. Because only when you return from your conferences with good discussions in your pockets will you find the motivation for preparing for the upcoming conference summer.

Categories
Reading List EN

RL #022: What you don’t know that you should know about energy sharing

With the current environmental and political climate, the media’s occupation with the topic of energy transition has become more prevalent than ever. Although many news outlets succeed in giving a well rounded and balanced debate on the role of governments, private companies and policies, still very little space is given to exercising the thought of citizen-led efforts for autonomous and local energy control. 

Hearing concepts such as sovereign, citizen-led or equal citizen participation within the complex world of energy production can often sound like empty or futuristic phrases, which have no ground in real life. That is understandable, considering the little media coverage citizen-led efforts get, however it is not true. This paper, by students from business management and environmental studies, shines a light on the concept of energy communities, which are based on a collaboration between citizens, governments and businesses for a clean energy transition. Even though these initiatives are not so popularized, they are, as pointed out by Sara Giovanni from Energy Cities a European learning community for future-proof cities, making a great contribution to fight climate change. It is therefore important that the communication and information flow outlets about these organisations are improved and this is what this reading list will be focusing on. 

Turning to the external

Some of the prominent issues within the process of promotion of energy communities is first of the lack of easy access to information, which means a need for an active search, which is difficult without having any prior knowledge. Another problem, as pointed out by Wahlund and Palm from Lund University, is the bias towards a decentralized energy model and an underrepresentation of energy communities (EC’s) within the mainstream media. What follows, as presented by the results of this study from two Universities in the Netherlands, is the lack of trust of the wider public towards EC’s and thus an indifference towards taking an active role in energy transition. 

On the brighter side, however, for those who already have the sprouts of interest towards EC’s there are various sources including this repository from European Federation for Agencies and Regions for Energy and Environment, which is aimed to give an insight into not only the examples but also various publications and updates related to Energy Communities. Another, a more general example of an informative database is the Projects for Public Spaces website, which brings together a wide array of community led projects from all over the world. 

Turning to the internal 

One of the benefits that internal communication within energy communities have is the already existing interest in active participation within energy transition, which acts as a drive to seek out and create new knowledge sharing opportunities. This has resulted, as presented by this research paper from the University of Bologna, in quite a large number of attempts being made in order to create EC’s and improve the communication between them. Many studies, like this one, have also been conducted in order to analyse new methods of knowledge sharing within the energy industry and changes, which can be made to adjust the sector to 21st century standards. 

According to John S. Edwards from Aston University in Birmingham, however, what renewable energy communities still lack is a good grasp on knowledge management and knowledge distribution, which is very well developed in the oil and gas sectors, causing green energy promotion and internal knowledge exchange to lag behind the fossil fuel industry. The acquisition, archiving and use of knowledge within energy communities is, as maintained by William King in his PhD research in Coventry University, much more understood in the commercial branches than within the EC’s, which are still early in their developmental stages. There is additionally, no theoretical framework that would act as a universal manual, which would specify effective knowledge management strategies (including even the language used, glossary of key terms and their applicability to various contexts). 

Energy transition is in many aspects still in its early stages, but through improvement of various elements including turning this niche market into a mainstream process through a more easily accessible media coverage can increase the speed with which current traditional and centralized energy systems are transformed into a community led, collaborative effort. 

Categories
Reading List EN

RL #021: Unblock your brain: AI-based Communication in Science

This Reading List is a little different. All text passages in italics were formulated by an AI named Neuroflash and later translated via Deepl.com. Reading tips and some personal thoughts of the curator appear in the last paragraph.

AI in Science Communication

Scientific articles are often dull and difficult to understand. But that doesn’t have to be the case! Thanks to new technologies, such as AI-based software, also scientists can write their articles in an interesting and easy-to-understand way.

In recent years, the role of AI in science has become increasingly clear. Its ability to analyze and process large amounts of data helps researchers understand and process complex topics. While AI is not yet perfect, it has the potential to make lasting improvements to science communication – especially in terms of efficiency and quality. Nevertheless, it is important to know the limits of the technology and not to trust it blindly. Only in this way can we ensure that AI actually supports us and does not replace us.

Photo by Joel Filipe on Unsplash

Examples of the Application of AI in Science Communication

In the communication of science, i.e. in the writing down of processes and results, AI already supports researchers in literature research or in the preparation of abstracts and summaries. AI can also help with the writing of scientific articles. However, it does not take over the complete work but supports the scientist in the research and the structure of the argument. It is important to keep control! The AI formulates self-criticism: for example, that it cannot convey emotions.

Bottom line: Free your Brain – with AI!

With this contribution already, it is clear that AI will soon play an important role in science communication. By using AI-based systems, scientists can publish their research faster and more effectively. Most importantly, AI enables scientists as well as journalists to write interesting and easy-to-understand texts. If we are to believe AI’s self-assessment, it will soon make a significant contribution to ensuring that the science we produce is read and understood by as many people as possible.

Photo by Max Langelott on Unsplash

Reading Suggestions and Remarks from a Human Being

The AI appears self-confident. And it has every reason to be. In “Tortured Phrases,” Guillaume Cabanac et al. address the increase in AI-generated texts in science, questioning the integrity of the researchers. Less biased, Yolanda Gil asks in the article published in AI Magazine whether AI will soon be able to formulate scientific texts. Her answer: yes – and sooner rather than later. The resulting challenges and mandates for scientists themselves are detailed by Mico Tatalovic in his paper “AI writing bots are about to revolutionize science journalism” for the Journal for Science Communication.

How does it feel to have the Reading List written? It was important to me to intervene as little as possible in the text proposal. While this is less obvious in English, this can be seen in the gender-specific language of the German version. But also in the confidence that the AI brings to the table. How biased is an AI that writes about itself? A lot of it I wouldn’t phrase that way; I’d tone it down. Or be more specific. These are the formulations from which you can guess an AI. Not a flippant formulation, but not a very specific one either. Daring is the imperative, it seems. Don’t worry. In the future, we will write ourselves again.

Categories
Reading List EN

RL #020: Science Communication and Democracy

Always in a constant state of fluctuation, global democracy has recently seen a strong decline. According to a 2021 press release from Freedom House, various factors, one of which was the Covid-19 pandemic, have recently contributed to a retreat of the individual from the public space. Shielding oneself from un-understandable developments in not only world health, natural science, and economy, but also social relationships has turned out to damage the growth of freedom, inclusiveness, and consent, which are extremely important cornerstones of democracy. Science communication can clarify difficult-to-comprehend concepts. It can bridge the gap between ongoing research and the general public. It can ease the discomfort of contributing to the public space. Following our Reading List tackling the inclusivity of science communication, this time we share some good reads that point to the relationship between science communication and democracy.

Democracy and an Informed but Helpless Public

Democracy is a process that requires a continuously informed public. It is the only way to allow for an equal public discourse. But things appear to be much more complex. In „The Fall of the Public Man”, sociologist Richard Sennett points out that the omission to explain science to civil society (available for purchase here) leads to the disruption of democratic processes. Incomprehensible information increases the misunderstanding of ongoing developments. And it leads to a lack of interest in everything that goes on beyond the individual sphere.

Photo by Marc Kleen on Unsplash

Let’s pin it down to the urban scale. Highlighted in Peter Marcuse’s paper „From Critical Urban Theory to the Right to the City”, the globally felt dissatisfaction with current worldwide living conditions causes a lot of frustration. The frustration does mainly result from a lack of access to knowledge. It inhibits our understanding of our potential relevance and role in improving our communal situation thus making us feel helpless. The feeling of helplessness is then proliferated by the physical and intellectual expansion of private actors. We cannot judge their impact on our environment, economy, and society. As argued in the much-cited article „Whose City Is It? Globalization and the Formation of New Claims” by Saskia Sassen, it is those entities suppressing the individual from the public.

Science Communicators within Democratic Environments

The widely spread misconception supporting notions of helplessness, is that scientific and academic knowledge can be produced by trained specialists only. Sure, specialization gives more capability for the execution and judgment of research. Following the argumentation of Bruno Latour in his 1993 published book „We have never been modern” however, research depends on the co-production and co-creation of information. To his understanding, Social change happens on a healthy, genuine, and transparent plane. It is all about giving people the feeling of autonomy and the capacity to govern themselves.

Photo by Artem Maltsev on Unsplash

On a similar path to Latour, in „Expertise, Democracy and Science Communication”, Bruce V. Lewenstein argues, that the more civil society comprehends science, the more attentive and appreciative they are of it. In return, this increases public demand and therefore potential funding. At the same time, as pointed out by Bernard Schiele et al. in ‘Science Communication and Democracy’, the co-creation of information leads to a more heterogeneous society. A society that is able to make informed and thus more sophisticated decisions about the future of our planet.

What Science Communication Can Do

Science communication alone will not solve the issue of a declining global democracy. It does, however, play a role in taking researched data from the hands of the selected few and spreading it into the possession of the multitudes. This decentralization of knowledge is an important factor of egalitarianism, but also in the creation of a well-informed voter. It improves the quality of decision-making in a democratic state. In „Scientific Citizenship in a Democratic Society”, Vilhjálmur Árnason from the University of Iceland argues that science communication and more explicitly scientific literacy drives public policy making. He claims that the creation of forums for reciprocal teaching is key for battling ignorance and shaping sustainable societal change. For interested readers, Daniel Williams from The Hasting Center further investigates the concept of ‘motivated ignorance’.

Photo by Danny Lines on Unsplash

Finally, this is where science communication can have a deeper impact. Knowledge democracy, as Alice Lemkes names the challenge of science communication in her white paper for Lankelly Chase, is the only way to counteract the inflexible system of hierarchical and undemocratic knowledge production.

This Reading List was written by Zuzanna Zajac.

Categories
Reading List EN

RL #019: Why Communication is a Crucial Part of any Science Endeavour

At Oikoplus we offer science communication. But why actually? What was the purpose of communicating research results to a broad audience again? Isn’t there a specialised audience for research? Isn’t it enough for those who know about it to read and talk about research? Well. There are valid reasons for a broad approach to scientific outreach. In this Reading List, you will find some of them.

In German, there is the expression “coming down to earth”. The metaphor is used to call for a discussion to be calibrated back to the shared factual basis when it has gotten out of hand and untruths or lies have crept in. Knowledge of facts and facts are the result of research and science. So it is precisely the ground from the metaphor that is at stake. And it is not only experts who walk on this ground, but all of us – even if we all leave it occasionally. Some more rarely, some more often, whether consciously or unconsciously.

For a more inclusive science

In 2015, Mónica Feliú-Mójer summarised for Scientific American’s blog why effective communication makes for better science. When scientists are able to communicate effectively beyond their peers to a broader, non-scientific audience, it strengthens support for science, promotes understanding of its broader importance to society, and encourages more informed decision-making. Communication can also make science accessible to audiences traditionally excluded from the scientific process. It can help science become more diverse and inclusive.

Science for the common good

In texts on science communication, one reads time and again that researchers should not lose contact with society. Of course not. Why should research stand outside society? Ideally, research should serve society. However, this relationship between science and civil society is by no means self-evident. In an article for The conversation, Toss Gascoigne and Joan Leach, both professors at the Centre for the Public Awareness of Science at the Australian National University, argue that the 20th century can be read as a long plea for sience communication in the interest of the common good.

Not even researchers read research papers only

Dmitry Dorofeev takes a short excursion into the history of science communication. In an article on the importance of science communication in layman’s terms, he starts from the 19th century. According to Dorofeev, in 1895 an editor of the Viennese daily newspaper Neue Freie Presse learned by chance about the discovery of X-rays by Wilhelm Röntgen, but recognised the significance and placed an article on the front page of his newspaper. The London Chronicle, the New York Sun, and by the New York Times did later pick up this article. The rapid dissemination of this imaging method in mass media, certainly contributed to the fact that X-ray technology was mentioned in 1000+ scientific articles the following year, says Dorofeev. After all – and this is still true today – researchers do not only inform themselves in specialised publications.

Promotion or PR?

Communicating research and science in a way that as many people as possible can participate is a noble reason. It allows society to benefit and researchers to inform themselves about the work of their colleagues. In addition, science communication increasingly serves as advertising and PR for individual research institutions and science locations. Empirically, Peter Weingart and Marina Joubert at Stellenbosch University in South Africa looked at the motivations to engage in science communication. Based on their findings on the ever-increasing actively pursued science communication, the authors conclude that a distinction between educational and promotional forms of science communication maintains the credibility of science.

There are a number of good reasons for communicating science and the results of research in a way they are understandable and interesting. The most important of all reasons remains that the ground of facts cited at the beginning must be ordered. Because curiosity, knowledge and innovation grow on it. 
 
 In our ArcheoDanube project, we are therefore trying to make archaeology accessible to tourists in a sustainable way and to make the results of research on the history of the Danube region accessible to as many people as possible. Indeed, the coordinators just published the fourth newsletter of the Interreg project.  
 
 

Categories
Reading List EN

RL #018: Writing with fluency: reducing energy in the reading process

In academia, we read all the time. We read long texts, short texts, monographs, anthologies, and abstracts. In the natural sciences, papers are usually shorter and follow a tightly organised structure. As for the social sciences, by contrast, the texts are longer and more fluid in structure. In both, we find figures of speech, examples and comparisons. They provide a framework for the results and add meaning. Across all disciplines, however, readers devote energy depending on the quality of the text. Reading energy is what this Reading List is all about.

Et= Esyn+Esem

In 2014, alarm bells were ringing all across the US scholarly community: for the first time in 35 years, scholars were reading fewer! Soon it turned out that the analysis was wrong and the title of the article confusing: scientists read 264 articles per year or 22 per month and have never been reading more. In an article published in Nature, Richard Van Noorden provides insight into the details of scientists’ reading habits.

For every new article, colleagues engage with previously unfamiliar narratives and writing styles. Without knowing the content, they invest energy in it. The total energy required to process a sentence (Et) is made up of two components: syntactic energy (Esyn) and semantic energy (Esem). At least, this is how Jean-Luc Lebrun argues in the book “Scientific Writing” published in 2007.

The best way to understand the energy required is … well … to read. How difficult is it for you to decode long, complex sentences and – more importantly – were you able to grasp the contents alongside their structure? To clarify the complexity of self-written sentences, it helps to underline all the main statements (the compound of noun and verb). The greater the gaps between the underlined passages, the more cumbersome the formulations. We have arrived at Lebruns’ core.

Foto von D0N MIL04K von Pexels

Break sentence structures

There are a number of strategies to help readers save energy when decoding sentence structures and instead spend it on understanding the content. In 2013, Tomi Kinnunen et al. from the University of Eastern Finland published SWAN – Scientific Writing Assistant. Outlined in a paper, SWAN built on the premises established by Lebrun and looked for particularly challenging sentence structures in texts: nested sentences, nominal structures, and long-windedness. Today, digital solutions such as Grammarly take over this function. But beware and continue breaking grammatical structures if beneficial to the readability. Also in academic essays.

Punctuation marks are particularly important when breaking up sentence structures: Commas, semi-colons, colons and dashes. In a blog post by the Writing Cooperative, Karen deGroot Karter shows how punctuation supports readability. Stephen Wilbers is more detailed. He devotes Week 21 of Mastering the Craft of Writing to the use of punctuation marks. His thesis is that while all punctuation separates, they offer different stylistic possibilities. Commas can be played around with.

Concluding remarks

Readability can be measured. For this text, a WordPress plugin did the job. The Flesch Reading Ease of this Reading List is 49,5. The text is considered difficult to read. The reason for the low score are sentences that are too long and too few transition words. However, it would be wrong to be put off by this. There are certainly readers and authors who would describe the text as easily readable and – overall – understandable. Assuming there are 22 articles a month and 264 articles read by every scientist per year, this likely applies to many scholarly publications. Nevertheless, examining one’s own writing from an energy perspective is certainly helpful. It’s a crucial step in making individual thinking and ideas approachable to others.

Categories
Reading List EN

RL #017: Ethics in Science Communication

In this rather short reading list, we address the question of whether there are ethical standards that science communication should adhere to. A simple answer is: yes, of course. On closer examination, however, the question is not so trivial. For debates about ethical issues are omnipresent in science as well as in the communication industry. The laws of the communications industry do not apply to science. Scientific standards do not apply to the communications industry. In practice, this not-so-small difference became clear at the beginning of the Corona pandemic, when the government of the German state of North Rhine-Westphalia commissioned a study and this was then exploited to the maximum by a professional PR agency, possibly also leaving the interpretation of the scientific results to the PR agency. The case is summarised in a (German) article by KOM- Magazin für Kommunikation.

The Good Scientific Practice

The high standards it sets for itself in the production of knowledge make research become science. These standards of scientific work include transparency and the reproducibility of its methods as well as aspects such as honesty, accountability and reliability. In sum, adherence to scientific standards leads to Good Scientific Practice. Scientific standards are the answer to the question of how research must be conducted in order to be recognised as science. They ensure that scientific knowledge is distinguishable from empirical knowledge, anecdotal knowledge, mere tradition or religious knowledge. They ensure scientific integrity. A comprehensive definition of these standards can be found in the European Code of Conduct for Research Integrity.

Constant Self-Assessment

However, Good Scientific Practice alone is not necessarily sufficient to also meet ethical standards. Good scientific practice answers the question of how research is to be conducted in order to have integrity. Ethical standards also touch on the question of what should or should not be done in research. This involves the role of human and animal test subjects in research, the handling of personal data, from photos to the individual human genome. When it comes to the question of ethics in science, many research institutions rely on the constant self-assessment of researchers. The European Commission provides guidelines for the implementation of such self-assessments in EU-funded projects.

The Good Science-PR

All this concerns science. But what about ethics in science communication? Are there also standards and criteria for good science PR and dissemination, or even for the ethically correct SciComm? To put it in a nutshell: Yes, there are such standards, e.g. set up in 2016 by Wissenschaft im Dialog and the German Federal Association of University Communication (Bundesverband Hochschulkommunikation). They can be found here.

Categories
Reading List EN

RL #016: Minecrafts’ large chicken collider and curiosity in research

In this Reading List, we look at how curiosity in science is political and how it sets standards for science communication. I start with the computer game Minecraft. After finding curiosity, we move on to a few Good Reads that address the connection between curiosity, science, and politics. The Reading list closes with some remarks on the links between explorers’ urge and science communication. Have fun reading!

Motivation unlimited: the large chicken collider

With 235 million copies sold, Minecraft is the most widely distributed computer game in the world. The aim of the game is to combine cube-shaped raw materials and use them to construct buildings or similar structures. The players mine stones and wood, search for oil, fire, and else. They explore a reference system quite similar to the real world. And indeed, Minecraft offers chemistry courses for both, the real world and the Minecraft universe. Study chemistry by combining resources in Minecraft. Why not?

In Minecraft, the day lasts twenty minutes sun always rises in the East. To understand the physics underlying the combination of resources, users created science experiments within Minecraft. Rob Schwarz has compiled five of these in a blog post on Stranger Dimensions. The most significant of all experiments: the large chicken collider. Much like CERN in the real world, the chicken collider intends to reveal what is the smallest possible block size in Minecraft.

Screenshot of the large chicken collider in Minecraft. Watch the video here: https://www.youtube.com/watch?v=E0XN00Wy7Rs

Curiosity and the unexpected

What inspires knowledge are the results of the efforts of a thought process. And to communicate the results as well as the underlying curiosity, communication is of particular importance. In Culture, Curiosity, and Communication, Nigel Sanitt explains why communication is the only constant in a science otherwise built on sand. The communication Sanitt refers to is both, stimulating and limiting. Those who poorly communicate research curiosity will face incomprehension and prohibition. Let me expand a little.

On the political dimension of curiosity, Dan M. Kahan et al. demonstrated in a 2017 study published in Political Psychology that information processing driven by scientific curiosity counteracts politically motivated information processing. In other words, people with research curiosity distance themselves from and question political narratives. Their results are not of immediate use to politicians. Furthermore: scientifically curious people appreciate unexpected results. They are less eager about confirming the status quo.

After the successful collision of two chickens in Minecraft’s quantum collider, they vanish: neither the usual raw nor a roasted chicken remain. What remains are feathers only. Did the chickens turn into energy? Was one of the two chickens an anti-chicken in its combination of raw materials? As the results of the experiment spread, the community begins to theorise. The game physics of Minecraft becomes subject to doubt. Would that be possible in an authoritarian Minecraft?

Curiosity in science

It is clear that curiosity has an effect on science. What triggers curiosity and how can we exploit it are not. In the Forbes online edition, Diane Hamilton gives an answer to the first of the two questions: fear, assumptions, environment, and technology trigger curiosity. A Wharton University podcast with astrophysicist Mario Livio reveals: “Curiosity has several kinds or flavors, and they are not driven by the same things.” Curiosity is everywhere and for everything; it only needs inspiration and nurturing.

Curiosity varies in form and intensity. Sometimes it is restricted.

Supporting or suppressing people’s curiosity is the key to success. However, when talking about curiosity in the context of science communication, this means communicating empathically, writes Elaine Burke. Why, should people be interested in your research? In addition to that, you should focus on relatability. Allow your audience to relate.

Coming to an end I return to Minecraft. Understanding how curiosity works in science, Minecraft remains a mishmash of completed, abandoned, and never-started projects. Ten years ago, the large chicken collider succeeded in reaching people and inspired them to question the Minecraft universe. Regardless of the topic, therein lies the aim, but at least the mission, of good science communication.

The mystery about the smallest possible block size in Minecraft remains unsolved.

Categories
Reading List EN

RL #015: Citizen Science: Choose your Communication Wisely

This 15th issue of the Oikoplus Reading List is about Citizen Science in theory and practice. Read on to discover 10 principles for Citizen Science projects, practical tips, and theoretical reflection on the concept of Citizen Science.

Citizen Science is one of those terms that seems new and innovative, although it actually refers to an ancient concept. Namely: people who are not scientists doing research. This has been happening all the time. And there are prominent historical examples. When, for example, Wilhelm Herschel discovered Uranus in 1781, he was the director of an orchestra. Astronomy was his hobby.

When we use the term Citizen Science or one of its many neighboring terms (community science, crowd science, crowd-sourced science, civic science, volunteer science, or volunteers monitoring), we often refer to a comprehensive introduction on Citizen Science formulated by Alan Irving from 1995. A more current overview of the citizen science concept and the potentials of citizen science is provided by Rick Bonney et.al. (2009). Even more recent is the comprehensive introduction ,Citizen Science – Innovation in Open Science, Society and Policy’ by Susanne Hecker et.al. (2018). Included amongst other: 10 Principles of Citizen Science.

Don’t ask what you can do for science. Ask what science does for you.

With the growing number of Citizen Science projects, questions of philosophy of science and epistemology naturally arise. In the 1970s, Paul Feyerabend explored ways to open science to society. His paper “Science in a Free Society” is a worthwhile introduction to Feyerabend’s work. Find a comment on it, here.

Feyerabend’s Citizen Science understanding is the subject of a text by Sarah M. Roe. She argues, that “Feyerabend teaches us that while the current citizen science movement focuses primarily on what citizens can do for science […] the movement should also focus on what science can do for citizens and what science can learn from citizens.”

Mobile apps and OS to support Citizen Science

But if you’re reading this, you probably don’t just want to deal with Citizen Science theoretically. Perhaps you want to implement your own project. If you want to collect specific scientific samples or artifacts, you might want to use a mobile app. Take Sapelli, for example. The app results from a British research project and grew into an open-source project enabling the collective collection of artifacts. Quite simply on a smartphone.

Not only has the software for collecting scientific samples become easier to use and more connected. Hardware has also become more affordable. An article on conversavation.com describes how mobile phone cameras document insect species. Also on conversation.com, Australian ornithologist Hugh Possingham describes why he would like to see as many people as possible become involved as amateur scientists. His argument: “If citizens immerse themselves in gathering knowledge and asking questions, they gain power – and are far more likely to engage in participatory democracy.”

Back to the theory…and the communication of Citizen Science

Swedish linguist and knowledge theorist Dick Kasperowski takes a somewhat more critical view, in a 2016 interview. He states“[...] citizens are only invited to do certain defined tasks like classifying or collecting data. You are not involved in all stages of the research process, even though that might be an ideal or rhetoric put forward. Citizens do very seldom formulate hypotheses or theories, for instance. No one is forced to take part in citizen science, but it has been criticised as a way of getting labour for free. I wonder what Marx would have said about it.” But now it becomes quite theoretical again. Sorry for that.

At the end, I would like to refer to a very practical publication. ‘Communication in Citizen Science’ by Carina Veeckman and Sarah Talboom (2019) offers a useful guide to developing a successful communication strategy in citizen science projects. After all, communication is the central key to successful citizen participation in research projects.